Helper-dependent adenoviral vectors (HDAds) are devoid of all viral coding sequences and have demonstrated tremendous potential for gene therapy by providing increased cloning capacity (up to 37 kb) and long-term, high-level transgene expression in vivo with negligible toxicity. Currently, the most widely used method of producing HDAds is the Cre/loxP system developed by Graham and co-workers. However, two major obstacles currently hinder progress of this promising technology: (1) the difficulty of large-scale vector production and (2) helper virus (HV) contamination. We have developed an improved producer cell line, HV, and protocols that have successfully addressed these problems. With this system, >1 x 10(13) viral particles (vp) can be easily produced from 3 liters of cells within 2 weeks of vector rescue, with specific yields of >10,000 vp/cell and with exceedingly low HV contamination of 0.4-0.1% without relying on density-based vector purification and 0.02-0.01% following CsCl purification. This new system represents a major improvement over the original method in terms of simplicity, speed, vector yield, and purity, and it will significantly improve our ability to assess this promising gene therapy technology, especially in large animal models and, ultimately, for clinical applications.
Adenoviruses are robust gene delivery vectors in vivo, but are limited by their propensity to provoke strong innate and adaptive responses. Previous work has demonstrated that polyethylene glycol (PEG) modification of adenovirus can protect the vectors from preexisting and adaptive immune responses by reducing protein-protein interactions. To test whether PEGylation can reduce innate immune responses to adenovirus by reducing their interactions with immune cells, first-generation (FG-Ad) and helper-dependent (HD-Ad) Ad5 vectors were PEGylated with SPA-PEG and tested in vitro and in vivo. We demonstrate that increasing PEGylation ablated in vitro transduction, but surprisingly had no negative effect on the level or distribution of in vivo gene delivery. This poor in vitro transduction could be rescued in part by physically forcing the PEGylated vectors onto cells, suggesting that physiological forces in vivo may enable transduction via heparin sulfate proteoglycan and integrin interactions. While transduction remained the same as for unmodified vectors, the PEGylated vectors reduced innate IL-6 responses by 70 and 50% in vivo for FG-Ad and HD-Ad. These reduced innate responses paralleled similar reductions in vector uptake by macrophages in vitro and Kupffer cells in vivo. These data suggest that PEGylation of Ad vectors can reduce innate immune responses without reducing transduction in vivo. These data also suggest that nonspecific vector uptake by macrophages and Kupffer cells may be critically involved in the initial activation of innate immune responses.
Systemic intravascular delivery of adenoviral (Ad) vectors for liver-directed gene therapy has been widely employed because of its simplicity, noninvasiveness, and potential for high transduction. For first-generation Ad vectors (FGAd), this results in high but transient levels of transgene expression and long-term hepatotoxicity due to viral gene expression from the vector backbone. Furthermore, high doses also result in an acute innate inflammatory response with potentially lethal consequences. Unlike FGAd, helper-dependent Ad vectors (HDAd) contain no viral genes and can provide sustained, high-level transgene expression with negligible long-term toxicity. However, whether the absence of viral gene expression leads to any decrease of acute toxicity in nonhuman primates has yet to be determined. To address this, we injected one baboon with 5.6 x 10(12) HDAd viral particles (VP)/kg and a second with 1.1 x 10(13) VP/kg. Approximately 50% hepatocyte transduction, accompanied by mild and transient acute toxicity, was observed in the animal receiving the lower dose. In the animal receiving the higher dose, 100% hepatocyte transduction, accompanied by lethal acute toxicity, was observed. These results indicate that systemic delivery of HDAd, like FGAd, results in acute toxicity in baboons consistent with activation of the innate inflammatory response, the severity of which is dose dependent, and confirm the hypothesis that Ad-mediated acute toxicity is independent of viral gene expression.
Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought.
• Mobilized hematopoietic stem cells transduced with IV injected HD-Ad5/35 11 vectors home to the BM persist long term.• Our approach allows for the stable genetic modification of primitive, long-term persisting HSPCs.Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35 11 ) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34 1 cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin 2 Sca1 1 Kit 2 cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. (Blood. 2016;128(18):2206-2217
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.