Antibiotic resistant strains of bacteria are a serious threat to human health. With increasing antibiotic resistance in common human pathogens, fewer antibiotics remain effective against infectious diseases. Staphylococcus aureus is a pathogenic bacterium of particular concern to human health as it has developed resistance to many of the currently used antibiotics leaving very few remaining as effective treatment. Alternatives to conventional antibiotics are needed for treating resistant bacterial infections. A deeper understanding of the cellular characteristics of resistant bacteria beyond well characterized resistance mechanisms can allow for increased ability to properly treat them and to potentially identify targetable changes. This review looks at antibiotic resistance in S aureus in relation to its cellular components, the cell wall, cell membrane and virulence factors. Methicillin resistant S aureus bacteria are resistant to most antibiotics and some strains have even developed resistance to the last resort antibiotics vancomycin and daptomycin. Modifications in cell wall peptidoglycan and teichoic acids are noted in antibiotic resistant bacteria. Alterations in cell membrane lipids affect susceptibility to antibiotics through surface charge, permeability, fluidity, and stability of the bacterial membrane. Virulence factors such as adhesins, toxins and immunomodulators serve versatile pathogenic functions in S aureus. New antimicrobial strategies can target cell membrane lipids and virulence factors including anti-virulence treatment as an adjuvant to traditional antibiotic therapy.
Antibiotic‐resistant strains of bacteria such as methicillin‐resistant
Staphylococcus aureus
are a threat to human health, and effective treatment options against them are needed. This study aimed to determine whether the insecticide permethrin was capable of inhibiting the growth of
S. aureus
or if some other component of a permethrin cream was responsible for a decrease in scabies associated bacterial infection previously observed. Ten
S. aureus
strains were grown in the presence of permethrin and formaldehyde both alone and in combination with percent inhibition determined by viable counts. Also, a time‐kill assay was conducted on
S. aureus
exposed to the same conditions. Finally, the morphology of
S. aureus
grown in the presence of permethrin was examined by scanning electron microscopy. Bacterial inhibition by permethrin ranged from 0% to 41% whereas inhibition by formaldehyde was 100%. The time‐kill curves of permethrin exposed cells were very similar to the positive growth control while the formaldehyde and combination exposure showed complete inhibition even at the 0‐hr time point. The scanning electron micrographs of permethrin grown
S. aureus
showed healthy cocci cells with no sign of cell damage. Our results show that permethrin is not capable of inhibiting the growth of bacteria enough for it to be termed bactericidal. Formaldehyde is a known antiseptic and therefore was responsible for the antibacterial effect observed after the use of permethrin cream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.