Using an approach that combines gene therapy with aromatic L-amino acid decarboxylase (AADC) gene and a pro-drug (L-dopa), dopamine, the neurotransmitter involved in Parkinson's disease, can be synthesized and regulated. Striatal neurons infected with the AADC gene by an adeno-associated viral vector can convert peripheral L-dopa to dopamine and may therefore provide a buffer for unmetabolized L-dopa. This approach to treating Parkinson's disease may reduce the need for L-dopa/carbidopa, thus providing a better clinical response with fewer side effects. In addition, the imbalance in dopamine production between the nigrostriatal and mesolimbic dopaminergic systems can be corrected by using AADC gene delivery to the striatum. We have also demonstrated that a fundamental obstacle in the gene therapy approach to the central nervous system, i.e., the ability to deliver viral vectors in sufficient quantities to the whole brain, can be overcome by using convection-enhanced delivery. Finally, this study demonstrates that positron emission tomography and the AADC tracer, 6-[ 18 F]fluoro-Lm-tyrosine, can be used to monitor gene therapy in vivo. Our therapeutic approach has the potential to restore dopamine production, even late in the disease process, at levels that can be maintained during continued nigrostriatal degeneration.
Dopamine, the major neurotransmitter depleted in Parkinson disease, can be synthesized and regulated in vivo with a combination of intrastriatal AAV-hAADC gene therapy and administration of the dopamine precursor l-Dopa. When tested in MPTP-lesioned monkeys, this approach resulted in long-term improvement in clinical rating scores, significantly lowered l-Dopa requirements, and a reduction in l-Dopa-induced side effects. Positron emission tomography with [(18)F]FMT confirmed persistent AADC activity, demonstrating for the first time that infusion of AAV vector into primate brain results in at least 6 years of transgene expression. AAV-hAADC restores the ability of the striatum to convert l-Dopa into dopamine efficiently. Introduction of this therapy into the clinic holds promise for Parkinson patients experiencing the motor complications that result from escalating l-Dopa requirements against a background of disease progression.
Many studies have demonstrated that adeno-associated virus serotype 9 (AAV9) transduces astrocytes and neurons when infused into rat or nonhuman primate (NHP) brain. We previously showed in rats that transduction of antigen-presenting cells (APC) by AAV9 encoding a foreign protein triggered a full neurotoxic immune response. Accordingly, we asked whether this phenomenon occurred in NHP. We performed parenchymal or intrathecal infusion of AAV9 encoding green fluorescent protein (GFP), a non-self protein derived from jellyfish, or human aromatic L-amino acid decarboxylase (hAADC), a self-protein, in separate NHP. Animals receiving AAV9-GFP into cisterna magna (CM) became ataxic, indicating cerebellar pathology, whereas AAV9-hAADC animals remained healthy. In transduced regions, AAV9-GFP elicited inflammation associated with early activation of astrocytic and microglial cells, along with upregulation of major histocompatibility complex class II (MHC-II) in glia. In addition, we found Purkinje neurons lacking calbindin after AAV9-GFP but not after AAV9-hAADC delivery. Our results demonstrate that AAV9-mediated expression of a foreign-protein, but not self-recognized protein, triggers complete immune responses in NHP regardless of the route of administration. Our results warrant caution when contemplating use of serotypes that can transduce APC if the transgene is not syngeneic with the host. This finding has the potential to complicate preclinical toxicology studies in which such vectors encoding human cDNA's are tested in animals.
This study completes the longest known in vivo monitoring of adeno-associated virus (AAV)-mediated gene expression in nonhuman primate (NHP) brain. Although six of the eight parkinsonian NHP originally on study have undergone postmortem analysis, as described previously, we monitored the remaining two animals for a total of 8 years. In this study, NHP received AAV2-human L-amino acid decarboxylase (hAADC) infusions into the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned putamen. Restoration of AADC activity restored normal response to levodopa and gene expression could be quantitated repeatedly over many years by 6-[(18)F]fluoro-meta-tyrosine (FMT)-positron emission tomography (PET) and confirm that AADC transgene expression remained unchanged at the 8-year point. Behavioral assessments confirmed continued, normalized response to levodopa (improvement by 35% over historical controls). Postmortem analysis showed that, although only 5.6 + or - 1% and 6.6 + or - 1% of neurons within the transduced volumes of the striatum were transduced, this still secured robust clinical improvement. Importantly, there were no signs of neuroinflammation or reactive gliosis at the 8-year point, indicative of the safety of this treatment. The present data suggest that the improvement in the L-3,4-dihydroxyphenylalanine (L-Dopa) therapeutic window brought about by AADC gene therapy is pronounced and persistent for many years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.