We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner’s guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N–H, O–H, S–H, and C–H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X=Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
A new enabling technology for the pumping of organometallic reagents such as n-butyllithium, Grignard reagents, and DIBAL-H is reported, which utilises a newly developed, chemically resistant, peristaltic pumping system. Several representative examples of its use in common transformations using these reagents, including metal–halogen exchange, addition, addition–elimination, conjugate addition, and partial reduction, are reported along with examples of telescoping of the anionic reaction products. This platform allows for truly continuous pumping of these highly reactive substances (and examples are demonstrated over periods of several hours) to generate multigram quantities of products. This work culminates in an approach to the telescoped synthesis of (E/Z)-tamoxifen using continuous-flow organometallic reagent-mediated transformations.
First introduced into medicines in the 1930s, the sulfonamide functional group continues to be present in a wide range of contemporary pharmaceuticals and agrochemicals. Despite their popularity in the design of modern bioactive molecules, the underpinning methods for sulfonamide synthesis are essentially unchanged since their introduction, and rely on the use of starting materials with preinstalled sulfur-functionality. Herein we report a direct single-step synthesis of sulfonamides that combines two of the largest monomer sets available in discovery chemistry, (hetero)aryl boronic acids and amines, along with sulfur dioxide, using a Cu(II) catalyst, to deliver a broad range of sulfonamides. Sulfur dioxide is provided by the surrogate reagent DABSO. The reaction tolerates broad variation in both coupling partners, including aryl, heteroaryl and alkenyl boronic acids, as well as cyclic and acyclic alkyl secondary amines, and primary anilines. We validate the method by showing that a variety of drugs, and drug-fragments, can be incorporated into the process.
Aminium radical cations have been extensively studied as electrophilic aminating species that readily participate in C–N bond forming processes with alkenes and arenes. However, their utility in synthesis has been limited, as their generation required unstable, reactive starting materials and harsh reaction conditions. Visible-light photoredox catalysis has emerged as a platform for the mild production of aminium radical cations from either unfunctionalized or N-functionalized amines. This Perspective covers recent synthetic methods that rely on the photocatalytic generation of aminium radical cations for C–N bond formation, specifically in the context of alkene hydroamination, arene C–H bond amination, and the mesolytic bond cleavage of alkoxyamines.
Here we report a catalytic, light-driven method for the redox-neutral depolymerization of native lignin biomass at ambient temperature. This transformation proceeds via a proton-coupled electron-transfer (PCET) activation of an alcohol O-H bond to generate a key alkoxy radical intermediate, which then drives the β-scission of a vicinal C-C bond. Notably, this depolymerization is driven solely by visible light irradiation, requiring no stoichiometric chemical reagents and producing no stoichiometric waste. This method exhibits good efficiency and excellent selectivity for the activation and fragmentation of β-O-4 linkages in the polymer backbone, even in the presence of numerous other PCET-active functional groups. DFT analysis suggests that the key C-C bond cleavage reactions produce non-equilibrium product distributions, driven by excited-state redox events. These results provide further evidence that visible-light photocatalysis can serve as a viable method for the direct conversion of lignin biomass into valuable arene feedstocks. Figure 1. (a) Stephenson's photocatalytic lignin depolymerization. (b) C-C bond cleavage of a model lignin dimer via O-H PCET. (c) Photocatalytic depolymerization of native lignin via O-H PCET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.