Induction of proinflammatory cytokines has been proposed to be a link between prenatal maternal intrauterine infection and neonatal brain damage. It is known that the endotoxin, lipopolysaccharide (LPS), released during bacterial infection crosses the placenta. Cytokine induction in the fetal rat brain after maternal administration of LPS was determined by reverse transcriptase-polymerase chain reaction method. LPS suspension in pyrogen-free saline was administered (i.p.) to pregnant rats at 18 d of gestation. The control group was treated with pyrogen-free saline. Expression of the proinflammatory cytokines, tumor necrosis factor-alpha and IL-1beta mRNA, in the fetal rat brain was increased in a dose-dependent manner at 1 h after LPS administration. The great increase in expression of IL-1beta mRNA was only observed at 1 h after injection of LPS (4 mg/kg), whereas the increased expression of tumor necrosis factor-alpha was still detectable from 4 to 24 h after LPS administration. Brain injuries were examined by immunohistochemistry in 8-d-old rat pups born to the dams that were consecutively treated with LPS (500 microg/kg) or pyrogen-free saline on gestation d 18 and 19. No apparent necrotic tissue damage was found in either the LPS group or the control group. Myelin basic protein staining, as a marker of myelin, was clearly observed in the internal capsule and the fimbria hippocampus in the rat brain from the control group. Myelin basic protein staining was much less and weaker in the brains of the LPS-treated group. Glial fibrillary acidic protein-positive astrocytes were observed in both the control and the LPS-treated groups. The LPS-treated group appeared to have more glial fibrillary acidic protein-positive astrocytes in the hippocampal and the cortex areas of the brain than the control group. Immunoblotting data showed that glial fibrillary acidic protein content in the cortex or the hippocampus of the LPS-treated rat brain was higher than in the control group. OX-42-positive staining (a marker of the type 3 complement receptors) of microglial cells was greatly reduced in the 8-d-old rat brain after maternal LPS administration. However, histochemistry with tomato lectin showed that staining of both amoeboid and ramified microglial cells in the LPS-treated rat brain was similar to that in the control group. The overall results indicate that maternal LPS administration induces an increased expression of IL-1beta and tumor necrosis factor-alpha mRNA in the fetal brain. Maternal LPS administration also increases glial fibrillary acidic protein-positive astrocytes, decreases myelin basic protein and alters immunoreactivity of microglia in the brain of offspring. Although results from the current study do not provide direct evidence linking LPS-induced cytokines with the abnormalities in the neonatal rat brain, our animal model may be appropriate for exploring the mechanisms involved in the effects of maternal infection on glial cells in the brains of offspring.
Docosahexaenoic acid (DHA; 22:6n-3) is important for normal visual development. We hypothesized that preterm infants fed formulas with marine oil as a source of DHA would have better visual acuity than infants fed formulas without marine oil, as measured by the Teller Acuity Card procedure. Marine oil (P < 0.001) and age (P < 0.0001) influenced visual acuity, by repeated-measures analysis of variance (ANOVA) corrected for the effect of subject. Marine-oil-supplemented infants had better visual acuity than those fed standard formulas at 2 and 4 mo of age, by Fishers' least-squares difference (LSD). Acuity of both dietary groups improved through 6.5 mo of age, then plateaued. Through 4 mo of age, acuity was inversely related to oxygen supplementation (log10 h) and positively related to DHA status, by general-linear-models (GLM) analysis. After 4 mo of age, birth weight and gestational age were the only variables consistently related to visual acuity by GLM. We conclude that marine-oil-supplemented formula improved visual acuity of preterm infants through 4 mo of age by improving DHA status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.