ObjectiveTo examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss.DesignFor the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS).ResultsParticipants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18-month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups. Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (−38.9% proportionally), as compared with MED (−19.6% proportionally; p=0.035 weight loss adjusted) and HDG (−12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic-acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all).ConclusionThe new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.Trial registration numberNCT03020186.
The redox reaction between cytochrome c (Cyt c) (P-551) and the blue copper protein azurin, both from Pseudomonas aeruginosa, was studied using the temperature-jump technique. Two relaxation times were observed in a mechanism assumed to involve three equilibria. The fast relaxation time (0.4 less than tau less than 8 ms) was ascribed to the electron exchange step. The slow relaxation time (tau congruent to 37 ms) was assigned to a conformational equilibrium of the reduced azurin that was coupled through the electron exchange step to a faster conformational equilibrium of the oxidized Cyt c (P551). But because the Cyt c (P551) isomerization, being very rapid, was uncoupled from the two slower equilibria, and was assumed to involve no spectral change, the amplitude of its relaxation time (tau congruent to 0.1 ms) would be zero. At 25 degrees C and pH 7.0 the rate constants for the oxidation and reduction of Cyt c (P551) by azurin were 6.1 X 10(6) and 7.8 X 10(6) M-1 s-1, respectively; for the formation and disappearance of the reactive conformational isomer of azurin they were 12 and 17 s-1, respectively. The rates for the Cyt c (P551) isomerization could only be estimated at approximately 10(4) s-1. The thermodynamic parameters of each reaction step were evaluated from the amplitudes of the relaxations and from Eyring plots of the rate constants. Measurements of the overall equilibrium constant showed it to be temperature independent (5-35 degrees C), i.e. deltaHtot = 0. This zero enthalpy change was found to be compatible with the enthalpies calculated for the individual steps. In the electron exchange equilibrium, the values of the activation enthalpies were two to three times higher than the values published for various low molecular weight reagents in their electron exchange with copper proteins, yet the rate of exchange between Cyt c (P551) and azurin was some hundreds of times faster. This was explained in terms of the measured positive or zero entropies of activation that could result from a high level of specificity between the proteins particularly in areas of complementary charges. The mechanism of electron transfer was considered as essentially an outer sphere reaction, of which the rate could be approximated by the Marcus theory.
One hundred fifty war veterans with ankylosing spondylitis were entered into a prospective study in 1947. In 1957, 142 were traced, and they have been reviewed periodically. Eighty‐one of these patients were still alive in 1980. Information was obtained from 67 (83%) of the survivors and 51 were reexamined. This report is based on the clinical findings in these 51 patients, who have a mean disease duration of 38 years. Forty‐seven (92%) were functioning well. The disease in 21 (41%) had progressed to cause severe spinal restriction. Of those, 12 had peripheral joint involvement early in their course and 9 had iritis. Seventy‐four percent of the patients who had mild spinal restriction after 10 years did not progress to having more severe restriction. Eighty‐one percent of the patients who had severe spinal restriction in 1980 were severely restricted within the first 10 years. Hips that were normal after 10 years of disease did not become diseased subsequently. This study suggests that a predictable pattern of ankylosing spondylitis emerges within the first 10 years of the disease.
Many risk factors for injury are presented in the literature, few of those are however consistent and the majority is associated with adult and not adolescent elite athletes. The aim was to identify risk factors for injury in adolescent elite athletes, by applying a biopsychosocial approach. A total of 496 adolescent elite athletes (age range 15-19), participating in 16 different sports, were monitored repeatedly over 52 weeks using a valid questionnaire about injuries, training exposure, sleep, stress, nutrition, and competence-based self-esteem. Univariate and multiple Cox regression analyses were used to calculate hazard ratios (HR) for risk factors for first reported injury. The main finding was that an increase in training load, training intensity, and at the same time decreasing the sleep volume resulted in a higher risk for injury compared to no change in these variables (HR 2.25, 95% CI, 1.46-3.45, P<.01), which was the strongest risk factor identified. In addition, an increase by one score of competence-based self-esteem increased the hazard for injury with 1.02 (HR 95% CI, 1.00-1.04, P=.01). Based on the multiple Cox regression analysis, an athlete having the identified risk factors (Risk Index, competence-based self-esteem), with an average competence-based self-esteem score, had more than a threefold increased risk for injury (HR 3.35), compared to an athlete with a low competence-based self-esteem and no change in sleep or training volume. Our findings confirm injury occurrence as a result of multiple risk factors interacting in complex ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.