Rationale The efflux capacity of HDL with cultured macrophages associates strongly and negatively with CAD status, indicating that impaired sterol efflux capacity might be a marker—and perhaps mediator—of atherosclerotic burden. However, the mechanisms that contribute to impaired sterol efflux capacity remain poorly understood. Objective To determine the relationship between myeloperoxidase-mediated oxidative damage to apoA-I, the major HDL protein, and the ability of HDL to remove cellular cholesterol by the ABCA1 pathway. Methods and Results We quantified both site-specific oxidation of apoA-I and HDL’s ABCA1 cholesterol efflux capacity in control subjects and subjects with stable coronary artery disease or acute coronary syndrome. The CAD and ACS subjects had higher levels of chlorinated tyrosine-192 and oxidized methionine-148 than the control subjects. In contrast, plasma levels of MPO did not differ between the groups. HDL from the CAD and ACS subjects was less able to accept cholesterol from cells expressing ABCA1 than HDL from control subjects. Levels of chlorinated tyrosine and oxidized methionine associated inversely with ABCA1 efflux capacity and positively with atherosclerotic disease status. These differences remained significant after adjusting for HDL-cholesterol levels. Conclusions Our observations indicate that MPO may contribute to the generation of dysfunctional HDL with impaired ABCA1 efflux capacity in humans with atherosclerosis. Quantification of chlorotyrosine and oxidized methionine in circulating HDL might be useful indicators of the risk of cardiovascular disease that are independent of HDL-cholesterol.
Background Mass spectrometric assays have the potential to replace protein immunoassays in basic science, clinical research, and clinical care. Previous studies have demonstrated the utility of assays using multiple-reaction monitoring mass spectrometry (MRM-MS) for the quantification of proteins in biological samples and many examples of the accuracy of these approaches to quantify spiked analytes have been reported. However, a direct comparison of multiplexed assays using liquid chromatography-tandem mass spectrometry with established immunoassays to measure endogenous proteins has not been reported. Methods We purified the HDL from the plasma of 30 human subjects enrolled in a clinical nutrition research study and used label-free shotgun proteomics approaches to analyze each sample. We then developed two different 6-plex assays that used isotope dilution MRM-MS: one assay used stable isotope labeled peptides and the other used stable isotope labeled apolipoprotein A-I (apoA-I), the most abundant protein in HDL, as internal standards to control for matrix effects and mass spectrometer performance. The shotgun and MRM-MS assays were then compared with commercially available immunoassays for each of the six analytes. Results Quantification by shotgun proteomics approaches correlated poorly with the six protein immunoassays. However, the MRM-MS approaches that used internal standard peptide or a single internal standard protein correlated well. In addition, MRM-MS approaches had good repeatability (<10% CV) and linearity. Conclusions Multiplexed MRM-MS assays correlate well with immunochemical measurements and have acceptable operating characteristics in complex samples. Our results support the proposal that MRM-MS could be used to replace immunoassays in a variety of settings.
Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL’s cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL’s proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.
Background-Alterations in protein composition and oxidative damage of high-density lipoprotein (HDL) have been proposed to impair the cardioprotective properties of HDL. We tested whether relative levels of proteins in HDL 2 could be used as biomarkers for coronary artery disease (CAD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.