Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification,
The clustering problem is a difficult problem for the data stream domain. This is because the large volumes of data arriving in a stream renders most traditional algorithms too inefficient. In recent years, a few one-pass clustering algorithms have been developed for the data stream problem. Although such methods address the scalability issues of the clustering problem, they are generally blind to the evolution of the data and do not address the following issues: (1) The quality of the clusters is poor when the data evolves considerably over time. (2) A data stream clustering algorithm requires much greater functionality in discovering and exploring clusters over different portions of the stream.The widely used practice of viewing data stream clustering algorithms as a class of onepass clustering algorithms is not very useful from an application point of view. For example, a simple one-pass clustering algorithm over an entire data stream of a few years is dominated by the outdated history of the stream. The exploration of the stream over different time windows can provide the users with a much deeper understanding of the evolving behavior of the clusters. At the same time, it is not possible to simultaneously perform dynamic clustering over all possible time horizons for a data stream of even moderately large volume. This paper discusses a fundamentally different philosophy for data stream clustering which is guided by application-centered requirements. The idea is divide the clustering process into an online component which periodically stores detailed summary statistics Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003 and an offline component which uses only this summary statistics. The offline component is utilized by the analyst who can use a wide variety of inputs (such as time horizon or number of clusters) in order to provide a quick understanding of the broad clusters in the data stream. The problems of efficient choice, storage, and use of this statistical data for a fast data stream turns out to be quite tricky. For this purpose, we use the concepts of a pyramidal time frame in conjunction with a microclustering approach.Our performance experiments over a number of real and synthetic data sets illustrate the effectiveness, efficiency, and insights provided by our approach.
http://bioinformatics.clemson.edu/Publication/Supplement/gsp.htm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.