ObjectiveThousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information.Data sourcesWe are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources.Data extractionACToR contains chemical structure information; physical–chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals.Data synthesisWe show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants.ConclusionsApproximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated Risk Information System, and the National Toxicology Program.
Nanoparticle zeta potentials are easy to measure and proposed as a required property for complete nanoparticle characterization, but relevant metadata must be reported with zeta potential to be scientifically useful.
For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.
Nanotechnology has the potential to dramatically improve the effectiveness of a number of existing consumer and industrial products and could have a substantial impact on the development of new products ranging from disease diagnosis and treatment to environmental remediation. The broad range of possible nanotechnology applications could lead to substantive changes in industrial productivity, economic growth, and international trade. A continuing evaluation of the human health implications of exposure to nanoscale materials will be essential before the commercial benefits of these materials can be fully realized. The purpose of this article is to review the human health implications of exposure to nanoscale materials in the context of a toxicological risk evaluation, the current scope of U.S. Federal research on nanoscale materials, and selected toxicological studies associated with nanoscale materials to note emerging research in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.