The process of translation is ambiguous, in that there are typically many valid translations for a given sentence. This gives rise to significant variation in parallel corpora, however, most current models of machine translation do not account for this variation, instead treating the problem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to account for local lexical and syntactic variation in parallel corpora. We provide an indepth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on several different language pairs demonstrate that the model consistently improves over strong baselines. * Code and a workflow that reproduces the experiments are available at https://github.com/philschulz/ stochastic-decoder. † Work done prior to joining Amazon.
Cross-lingual transfer is a leading technique for parsing low-resource languages in the absence of explicit supervision. Simple 'direct transfer' of a learned model based on a multilingual input encoding has provided a strong benchmark. This paper presents a method for unsupervised cross-lingual transfer that improves over direct transfer systems by using their output as implicit supervision as part of self-training on unlabelled text in the target language. The method assumes minimal resources and provides maximal flexibility by (a) accepting any pre-trained arc-factored dependency parser; (b) assuming no access to source language data; (c) supporting both projective and non-projective parsing; and (d) supporting multi-source transfer. With English as the source language, we show significant improvements over state-of-the-art transfer models on both distant and nearby languages, despite our conceptually simpler approach. We provide analyses of the choice of source languages for multi-source transfer, and the advantage of non-projective parsing. Our code is available online. 1
Grounding is crucial for natural language understanding. An important subtask is to understand modified color expressions, such as "dirty blue". We present a model of color modifiers that, compared with previous additive models in RGB space, learns more complex transformations. In addition, we present a model that operates in the HSV color space. We show that certain adjectives are better modeled in that space. To account for all modifiers, we train a hard ensemble model that selects a color space depending on the modifiercolor pair. Experimental results show significant and consistent improvements compared to the state-of-the-art baseline model. 1
In word alignment certain source words are only needed for fluency reasons and do not have a translation on the target side. Most word alignment models assume a target NULL word from which they generate these untranslatable source words. Hypothesising a target NULL word is not without problems, however. For example, because this NULL word has a position, it interferes with the distribution over alignment jumps. We present a word alignment model that accounts for untranslatable source words by generating them from preceding source words. It thereby removes the need for a target NULL word and only models alignments between word pairs that are actually observed in the data. Translation experiments on English paired with Czech, German, French and Japanese show that the model outperforms its traditional IBM counterparts in terms of BLEU score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.