In humans and many other primates, the visual system plays the major role in object recognition. But objects can also be recognized through haptic exploration, which uses our sense of touch. Nonetheless, it has been argued that the haptic system makes use of 'visual' processing to construct a representation of the object. To investigate possible interactions between the visual and haptic systems, we used functional magnetic resonance imaging to measure the effects of cross-modal haptic-to-visual priming on brain activation. Subjects studied three-dimensional novel clay objects either visually or haptically before entering the scanner. During scanning, subjects viewed visually primed, haptically primed, and non-primed objects. They also haptically explored non-primed objects. Visual and haptic exploration of non-primed objects produced significant activation in several brain regions, and produced overlapping activation in the middle occipital area (MO). Viewing visually and haptically primed objects produced more activation than viewing non-primed objects in both area MO and the lateral occipital area (LO). In summary, haptic exploration of novel three-dimensional objects produced activation, not only in somatosensory cortex, but also in areas of the occipital cortex associated with visual processing. Furthermore, previous haptic experience with these objects enhanced activation in visual areas when these same objects were subsequently viewed. Taken together, these results suggest that the object-representation systems of the ventral visual pathway are exploited for haptic object perception.
Three experiments were conducted to explore the role of colour and other surface properties in object recognition. The effects of manipulating the availability of surface-based information on object naming in a patient with visual form agnosia and in two age-matched control subjects were examined in experiment 1. The objects were presented under seven different viewing conditions ranging from a full view of the actual objects to line drawings of those same objects. The presence of colour and other surface properties aided the recognition of natural objects such as fruits and vegetables in both the patient and the control subjects. Experiment 2 was focused on four of the critical viewing conditions used in experiment 1 but with a large sample of normal subjects. As in experiment 1, it was found that surface properties, particularly colour, aided the naming of natural objects. The presence of colour did not facilitate the naming of manufactured objects. Experiment 3 was focused on possible ways by which colour could assist in the recognition of natural objects and it was found that object naming was facilitated only if the objects were presented in their usual colour. The results of the experiments show that colour does improve recognition for some types of objects and that the improvement occurs at a high level of visual analysis.
We used fMRI to identify the brain areas related to the perception of biological motion (4 T EPI; whole brain). In experiment 1, 10 subjects viewed biological motion (a human figure jumping up and down, composed of 21 dots), alternating with a control stimulus created by applying autoregressive models to the biological motion stimulus (such that the dots' speeds and amplitudes were preserved whereas their linking structure was not). The lengths of the stimulus bouts varied, and therefore the transitions between biological motion and control stimuli were unpredictable. Subjects had to indicate with a button press when each transition occurred. In a related biological motion task, subjects detected short (1 s) disturbances within these displays. We also examined the neural substrates of motion and shape perception, as well as motor imagery, to determine whether or not the cortical regions involved in these processes are also recruited during biological motion perception. Subjects viewed linear motion displays alternating with static dots and a series of common objects alternating with band-limited white noise patterns. Subjects also generated imagery of their own arm movements alternating with visual imagery of common objects. Biological motion specific BOLD signal was found within regions of the lingual gyrus at the cuneus border, showing little overlap with object recognition, linear motion or motion imagery areas. The lingual gyrus activation was replicated in a second experiment that also mapped retinotopic visual areas in three subjects. The results suggest that a region of the lingual gyrus within VP is involved in higher-order processing of motion information.
Previous research has suggested that binocular vision plays an important role in prehension. It has been shown that removing binocular vision affects (negatively) both the planning and on-line control of prehension. It has been suggested that the adverse impact of removing binocular vision is because monocular viewing results in an underestimation of target distance in visuomotor tasks. This suggestion is based on the observation that the kinematics of prehension are altered when viewing monocularly. We argue that it is not possible to draw unambiguous conclusions regarding the accuracy of distance perception from these data. In experiment 1, we found data that contradict the idea that a consistent visuomotor underestimation of target distance is an inevitable consequence of monocular viewing. Our data did show, however, that positional variance increases under monocular viewing. We provide an alternative explanation for the kinematic changes found when binocular vision is removed. Our account is based on the changes in movement kinematics that occur when end-point variance is altered following the removal of binocular vision. We suggest that the removal of binocular vision leads to greater perceptual uncertainty (e.g. less precise stimulus cues), resulting in changes in the kinematics of the movement (longer duration movements). Our alternative account reconciles some differences within the research literature. We conducted a series of experiments to explore further the issue of when binocular information is advantageous in prehension. Three subsequent experiments were employed which varied binocular/monocular viewing in selectively lit conditions. Experiment 2 explored the differences in prehension measured between monocular and binocular viewing in a full cue environment with a continuous view of the target object. Experiment 3 required participants to reach, under a monocular or binocular view, for a continuously visible self-illuminated target object in an otherwise dark room. In Experiment 3, the participant could neither see the target object nor the reaching hand following initiation of the prehension movement. Our results suggest that binocular vision contributes to prehension by providing additional information (cues) to the nervous system. These cues appear to be weighted differentially according to the particular constellation of stimulus cues available to the participants when reaching to grasp. One constant advantage of a binocular view appears to be the provision of on-line information regarding the position of the hand relative to the target. In reduced cue conditions (i.e. where a view of the target object is lost following initiation of the movement), binocular information regarding target location appears to be particularly useful in the initial programming of reach distance. Our results are a step towards establishing the specific contributions that binocular vision makes to the control of prehension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.