Background . Real-world data show that approximately 50% of psoriasis patients treated with a biologic agent will discontinue the drug because of loss of efficacy. History of previous therapy with another biologic, female sex and obesity were identified as predictors of drug discontinuations, but their individual predictive value is low.Objectives . To determine whether machine learning algorithms can produce models that can accurately predict outcomes of biologic therapy in psoriasis on individual patient level.Results. All tested machine learning algorithms could accurately predict the risk of drug discontinuation and its cause (e.g. lack of efficacy vs adverse event). The learned generalized linear model achieved diagnostic accuracy of 82%, requiring under 2 seconds per patient using the psoriasis patients dataset. Input optimization analysis established a profile of a patient who has best chances of long-term treatment success: biologic-naive patient under 49 years, early-onset plaque psoriasis without psoriatic arthritis, weight < 100 kg, and moderate-to-severe psoriasis activity (DLQI ≥ 16; PASI ≥ 10). Moreover, a different generalized linear model is used to predict the length of treatment for each patient with mean absolute error (MAE) of 4.5 months. However Pearson Correlation Coefficient indicates 0.935 linear dependencies between the actual treatment lengths and predicted ones.Conclusions . Machine learning algorithms predict the risk of drug discontinuation and treatment duration with accuracy exceeding 80%, based on a small set of predictive variables. This approach can be used as a decision making tool, communicating expected outcomes to the patient, and development of evidence-based guidelines.
<b><i>Background:</i></b> Primary cutaneous CD4+ small/medium pleomorphic T-cell lymphoproliferative disorder (SMPLPD) is a provisional entity within the 2016 World Health Organization classification of primary cutaneous lymphomas. The condition is currently classified as a lymphoproliferative disorder to emphasize its benign course and discourage aggressive, systemic treatment modalities. <b><i>Objective:</i></b> To provide a relevant synthesis for the dermatological practitioner on the prevalence, presentation, and treatment of SMPLPD. <b><i>Methods:</i></b> We conducted an updated systematic literature review and a retrospective chart review of diagnosed cases of SMPLPD from 2 Canadian academic cutaneous lymphoma centers. <b><i>Results:</i></b> A total of 23 studies with 136 cases were extracted from the systematic review and 24 patients from our retrospective chart review. SMPLPD proved relatively common accounting for 12.5% of all cutaneous T-cell lymphomas encountered in our cutaneous lymphoma clinics, second in frequency only to mycosis fungoides. The typical clinical presentation was that of an older individual (median age 59 years) with an asymptomatic solitary lesion on their upper extremity. The most common clinical differentials were cutaneous lymphoid hyperplasia, basal cell carcinoma, and lymphoma unspecified. T follicular helper markers were reliably detected. The main treatment modalities were surgical excision, local radiation therapy, and topical or intralesional steroids. Cure was achieved in the vast majority of cases. <b><i>Conclusions:</i></b> SMPLPD is an underdiagnosed T-cell lymphoma with an overtly benign clinical course. The condition has an excellent prognosis and responds well to skin-directed therapies. Practitioners should be aware of this condition to avoid aggressive systemic treatments.
Mycosis fungoides (MF) and Sézary syndrome (SS) are chronic, progressive primary cutaneous T-cell lymphomas (CTCLs) for which there are no curative treatments. Skin-directed therapies, such as phototherapy, radiation therapy, or topical nitrogen mustard, provide only short-term remissions. Numerous attempts with different chemotherapeutic regimes failed to achieve meaningful clinical responses. Immunotherapy seems to be a promising avenue to achieve long-term disease control in CTCL. There is compelling evidence indicating that MF and SS are immunogenic lymphomas, which can be recognized by the patient’s immune system. However, CTCL uses different strategies to impair host’s immunity, eg, via repolarizing the T-cell differentiation from type I to type II, recruiting immunosuppressive regulatory T-cells, and limiting the repertoire of lymphocytes in the circulation. Many currently used therapies, such as interferon-α, imiquimod, extracorporeal phototherapy, and allogeneic bone marrow transplant, seem to exert their therapeutic effect via activation of the antitumor cytotoxic response and reconstitution of the host’s immune system. It is likely that novel immunotherapies such as immune checkpoint inhibitors, cancer vaccines, and chimeric antigen receptor-T cells will help to manage CTCL more efficiently. We also discuss how current genomic techniques, such as estimating the mutational load by whole genome sequencing and neoantigen calling, are likely to provide clinically useful information facilitating personalized immunotherapy of CTCL.
Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.
Cryptococcus gattii is a major cause of life-threatening mycosis in immunocompetent individuals and responsible for the ongoing epidemic outbreak of cryptococcosis in the Pacific Northwest of North America. This deadly fungus is known to evade important host immune responses, including dendritic cell (DC) maturation and concomitant T cell immunity, via immune evasion mechanisms that remain unclear. Here, we demonstrate that primary human DCs phagocytose C. gattii but the maturation of phagosomes to phagolysosomes was blocked as a result of sustained filamentous actin (F-actin) that entrapped and concealed the phagosomes from recognition. Superresolution structured illumination microscopy (SR-SIM) revealed that the persistent phagosomal F-actin formed a cage-like structure that sterically hindered and functionally blocked the fusion of lysosomes. Blocking lysosome fusion was sufficient to inhibit phagosomal acidification and subsequent intracellular fungal killing by DCs. Retention of phagosomal F-actin by C. gattii also caused DC immunoparalysis. Disrupting the retained F-actin cage with cytochalasin D not only restored DC phagosomal maturation but also promoted DC costimulatory maturation and robust T cell activation and proliferation. Collectively, these results reveal a unique mechanism of DC immune evasion that enhances intracellular fungal pathogenicity and may explain suppressed cell-mediated immunity. IMPORTANCE Cryptococcus yeast species typically display characteristics of opportunistic pathogens, with the exception of C. gattii, which can cause life-threatening respiratory and disseminated brain infections in otherwise healthy people. The pathogenesis of C. gattii is not well understood, but an important characteristic is that C. gattii is capable of evading host cell-mediated immune defenses initiated by DCs. Here, we report that when virulent C. gattii becomes ingested by a DC, the intracellular compartment containing the fungi is covered by a persistent protein cage structure consisting of F-actin. This F-actin cage acts as a barrier to prevent interaction with other intracellular compartments, and as a result, the DC fails to kill the fungi and activate important cell-mediated immune responses. We propose that this unique immune evasion mechanism permits C. gattii to remain unchallenged within host cells, leading to persistent infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.