The Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) project aims to study the impacts of cloud seeding on winter orographic clouds. The field campaign took place in Idaho between 7 January and 17 March 2017 and employed a comprehensive suite of instrumentation, including ground-based radars and airborne sensors, to collect in situ and remotely sensed data in and around clouds containing supercooled liquid water before and after seeding with silver iodide aerosol particles. The seeding material was released primarily by an aircraft. It was hypothesized that the dispersal of the seeding material from aircraft would produce zigzag lines of silver iodide as it dispersed downwind. In several cases, unambiguous zigzag lines of reflectivity were detected by radar, and in situ measurements within these lines have been examined to determine the microphysical response of the cloud to seeding. The measurements from SNOWIE aim to address long-standing questions about the efficacy of cloud seeding, starting with documenting the physical chain of events following seeding. The data will also be used to evaluate and improve computer modeling parameterizations, including a new cloud-seeding parameterization designed to further evaluate and quantify the impacts of cloud seeding.
The distribution of radar-estimated precipitation from lake-effect snowbands over and downwind of Lake Ontario shows more snowfall in downwind areas than over the lake itself. Here, two nonexclusive processes contributing to this are examined: the collapse of convection that lofts hydrometeors over the lake and allows them to settle downwind; and stratiform ascent over land, due to the development of a stable boundary layer, frictional convergence, and terrain, leading to widespread precipitation there. The main data sources for this study are vertical profiles of radar reflectivity and hydrometeor vertical velocity in a well-defined, deep longlake-axis-parallel band, observed on 11 December 2013 during the Ontario Winter Lake-effect Systems (OWLeS) project. The profiles are derived from an airborne W-band Doppler radar, as well as an array of four K-band radars, an X-band profiling radar, a scanning X-band radar, and a scanning S-band radar.The presence of convection offshore is evident from deep, strong (up to 10 m s 21 ) updrafts producing bounded weak-echo regions and locally heavily rimed snow particles. The decrease of the standard deviation, skewness, and peak values of Doppler vertical velocity during the downwind shore crossing is consistent with the convection collapse hypothesis. Consistent with the stratiform ascent hypothesis are (i) an increase in mean vertical velocity over land; and (ii) an increasing abundance of large snowflakes at low levels and over land, due to depositional growth and aggregation, evident from flight-level and surface particle size distribution data, and from differences in reflectivity values from S-, X-, K-, and W-band radars at nearly the same time and location.
Intense lake-effect snowfall results from a long-lake-axis-parallel (LLAP) precipitation band that often forms when the flow is parallel to the long axis of an elongated body of water, such as Lake Ontario. The intensity and persistence of the localized precipitation along the downwind shore and farther inland suggests the presence of a secondary circulation that helps organize such a band, and maintain it for some time as the circulation is advected inland. Unique airborne vertical-plane dual-Doppler radar data are used here to document this secondary circulation in a deep, well-organized LLAP band observed during intensive observing period (IOP) 2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. The circulation, centered on a convective updraft, intensified toward the downwind shore and only gradually weakened inland. The question arises as to what sustains such a circulation in the vertical plane across the LLAP band. WRF Model simulations indicate that the primary LLAP band and other convergence zones observed over Lake Ontario during this IOP were initiated by relatively shallow airmass boundaries, resulting from a thermal contrast (i.e., land-breeze front) and differential surface roughness across the southern shoreline. Airborne radar data near the downwind shore of the lake indicate that the secondary circulation was much deeper than these shallow boundaries and was sustained primarily by rather symmetric solenoidal forcing, enhanced by latent heat release within the updraft region.
This study describes a downslope wind storm event observed over the Medicine Bow range (Wyoming, USA) on 11 January 2013. The University of Wyoming King Air (UWKA) made four along-wind passes over a five-hour period over the mountain of interest. These passes were recognized as among the most turbulent ones encountered in many years by crew members. The MacCready turbulence meter aboard the UWKA measured moderate to severe turbulence conditions on each pass in the lee of the mountain range, with eddy dissipation rate values over 0.5 m 2/3 s −1 . Three rawinsondes were released from an upstream location at different times. This event is simulated using the non-hydrostatic Weather Research and Forecast (WRF) model at an inner-domain resolution of 1 km. The model produces a downslope wind storm, notwithstanding some discrepancies between model and rawinsonde data in terms of upstream atmospheric conditions. Airborne Wyoming Cloud Radar (WCR) vertical-plane Doppler velocity data from two beams, one pointing to the nadir and one pointing slant forward, are synthesized to obtain a two-dimensional velocity field in the vertical plane below flight level. This synthesis reveals the fine-scale details of an orographic wave breaking event, including strong, persistent downslope acceleration, a strong leeside updraft (up to 10 m·s −1 ) flanked by counter-rotating vortices, and deep turbulence, extending well above flight level. The analysis of WCR-derived cross-mountain flow in 19 winter storms over the same mountain reveals that cross-mountain flow acceleration and downslope wind formation are difficult to predict from upstream wind and stability profiles.
A first observational and modeling study of a dryline and associated initiation of deep convection over the high plains of southeastern Wyoming is presented. Radar and station measurements show that the dryline is a well-defined convergent humidity boundary with a modest density (i.e., buoyancy) gradient. Its development, intensity, and movement are regulated by the terrain, diurnal land surface and boundary layer processes, and synoptic-scale evolution. At least one of the thunderstorms that emerged from the dryline became severe. Weather Research and Forecasting Model (WRF) simulations accurately reproduce measured aspects of this dryline, as well as the timing and location of convection initiation. The WRF output is used further to characterize the dryline vertical and horizontal structures and to examine convection initiation processes. A dryline bulge over a local terrain ridge appears to be an essential ingredient in convection initiation on this day: just north of this bulge the surface convergence and buoyancy gradient are strongest, and deep convection is triggered. In this region especially, the WRF simulation produces horizontal convective rolls intersecting with the dryline, as well as small cyclonic vortices along the dryline. In fact, the primary storm cell initiates just downwind of one such vortex. Part II of this study describes the finescale vertical structure of this dryline using airborne Raman lidar data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.