Nanopesticides or nano plant protection products represent an emerging technological development that, in relation to pesticide use, could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. A number of formulation types have been suggested including emulsions (e.g., nanoemulsions), nanocapsules (e.g., with polymers), and products containing pristine engineered nanoparticles, such as metals, metal oxides, and nanoclays. The increasing interest in the use of nanopesticides raises questions as to how to assess the environmental risk of these materials for regulatory purposes. Here, the current approaches for environmental risk assessment of pesticides are reviewed and the question of whether these approaches are fit for purpose for use on nanopesticides is addressed. Potential adaptations to existing environmental risk assessment tests and procedures for use with nanopesticides are discussed, addressing aspects such as analysis and characterization, environmental fate and exposure assessment, uptake by biota, ecotoxicity, and risk assessment of nanopesticides in aquatic and terrestrial ecosystems. Throughout, the main focus is on assessing whether the presence of the nanoformulation introduces potential differences relative to the conventional active ingredients. The proposed changes in the test methodology, research priorities, and recommendations would facilitate the development of regulatory approaches and a regulatory framework for nanopesticides.
Plant protection products containing nanomaterials that alter the functionality or risk profile of active ingredients (nano-enabled pesticides) promise many benefits over conventional pesticide products. These benefits may include improved formulation characteristics, easier application, better targeting of pest species, increased efficacy, lower application rates, and enhanced environmental safety. After many years of research and development, nano-enabled pesticides are starting to make their way into the market. The introduction of this technology raises a number of issues for regulators, including how does the ecological risk assessment of nano-enabled pesticide products differ from that of conventional plant protection products? In this paper, a group drawn from regulatory agencies, academia, research, and the agrochemicals industry offers a perspective on relevant considerations pertaining to the problem formulation phase of the ecological risk assessment of nano-enabled pesticides.
Residues of veterinary drugs have potential implications for human food safety and international trade in animal-derived food commodities. A particular concern is the slow depletion of residues of some injectable formulations from the site of administration. Licensing authorities have adopted different approaches to the human food safety assessment of injection site residues. European agencies apply the maximum residue limit (MRL) for muscle to muscle at the injection site and specify a withdrawal period sufficient to ensure the ingestion of a 300 g portion of muscle, if comprised entirely of injection site tissue, does not exceed the acceptable daily intake. The agencies in Australia, Canada and the USA also exclude injection site residues from the MRL-setting process. These agencies evaluate the risk to consumers posed by potential acute manifestations resulting from the infrequent ingestion of injection site residues based on acute dietary exposure considerations. While all of these approaches protect the safety of consumers, the adoption of different approaches has potential implications for residue surveillance programs in the international trade in meat. In particular, when an exporting country establishes standards for residues at injection sites based on acute dietary exposure considerations and the importing country assesses these residues against the MRL for muscle, the unnecessary condemnation of meat and disruption to market access may result. The latter may represent a potential economical impost to the exporting country. An internationally harmonized approach to the risk analysis of residues of veterinary drugs at injection sites, which protects the safety of consumers and facilitates the international trade in meat, is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.