The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections.
Clinical and experimental studies have shown that estradiol (E2) confers protection against HIV and other sexually transmitted infections. Here, we investigated the underlying mechanism. Better protection in E2-treated mice, immunized against genital HSV-2, coincided with earlier recruitment and higher proportions of Th1 and Th17 effector cells in the vagina post-challenge, compared to placebo-treated controls. Vaginal APCs isolated from E2-treated mice induced 10-fold higher Th17 and Th1 responses, compared to APCs from progesterone-treated, placebo-treated, and estradiol-receptor knockout mice in APC-T cell co-cultures. CD11c+ DCs in the vagina were the predominant APC population responsible for priming these Th17 responses, and a potent source of IL-6 and IL-1β, important factors for Th17 differentiation. Th17 responses were abrogated in APC-T cell co-cultures containing IL-1β KO, but not IL-6 KO vaginal DCs, showing that IL-1β is a critical factor for Th17 induction in the genital tract. E2 treatment in vivo directly induced high expression of IL-1β in vaginal DCs, and addition of IL-1β restored Th17 induction by IL-1β KO APCs in co-cultures. Finally, we examined the role of IL-17 in anti-HSV-2 memory T cell responses. IL-17 KO mice were more susceptible to intravaginal HSV-2 challenge, compared to WT controls, and vaginal DCs from these mice were defective at priming efficient Th1 responses in vitro, indicating that IL-17 is important for the generation of efficient anti-viral memory responses. We conclude that the genital mucosa has a unique microenvironment whereby E2 enhances CD4+ T cell anti-viral immunity by priming vaginal DCs to induce Th17 responses through an IL-1-dependent pathway.
Although clinical and experimental evidence indicates that female sex hormones and hormonal contraceptives regulate susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, the underlying mechanism remains unknown. Genital epithelial cells (GECs) are the first cells to encounter HIV during sexual transmission and their interaction with HIV may determine the outcome of exposure. This is the first report that HIV uptake by GECs increased significantly in the presence of the hormonal contraceptive medroxyprogesterone acetate (MPA) and progesterone and that uptake occurred primarily via endocytosis. No productive infection was detected, but endocytosed virus was released into apical and basolateral compartments. Significantly higher viral transcytosis was observed in the presence of MPA. In GEC and T-cell cocultures, maximum viral replication in T cells was observed in the presence of MPA, which also broadly upregulated chemokine production by GECs. These results suggest that MPA may play a significant role in regulating susceptibility to HIV.
The hormonal contraceptive medroxyprogesterone acetate (MPA) is associated with increased risk of human immunodeficiency virus (HIV), via incompletely understood mechanisms. Increased diversity in the vaginal microbiota modulates genital inflammation and is associated with increased HIV-1 acquisition. However, the effect of MPA on diversity of the vaginal microbiota is relatively unknown. In a cohort of female Kenyan sex workers, negative for sexually transmitted infections (STIs), with Nugent scores <7 (N=58 of 370 screened), MPA correlated with significantly increased diversity of the vaginal microbiota as assessed by 16S rRNA gene sequencing. MPA was also significantly associated with decreased levels of estrogen in the plasma, and low vaginal glycogen and α-amylase, factors implicated in vaginal colonization by lactobacilli, bacteria that are believed to protect against STIs. In a humanized mouse model, MPA treatment was associated with low serum estrogen, low glycogen and enhanced HIV-1 susceptibility. The mechanism by which the MPA-mediated changes in the vaginal microbiota may contribute to HIV-1 susceptibility in humans appears to be independent of inflammatory cytokines and/or activated T cells. Altogether, these results suggest MPA-induced hypo-estrogenism may alter key metabolic components that are necessary for vaginal colonization by certain bacterial species including lactobacilli, and allow for greater bacterial diversity in the vaginal microbiota..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.