The hypothalamic-pituitary-adrenal axis exerts profound, multilevel inhibitory effects on the female reproductive system. Corticotropin-releasing hormone (CRH) and CRH-induced proopiomelanocortin peptides inhibit hypothalamic gonadotropin-releasing hormone secretion, whereas glucocorticoids suppress pituitary luteinizing hormone and ovarian estrogen and progesterone secretion and render target tissues resistant to estradiol. The hypothalamic-pituitary-adrenal axis is thus responsible for the "hypothalamic" amenorrhea of stress, which is also seen in melancholic depression, malnutrition, eating disorders, chronic active alcoholism, chronic excessive exercise, and the hypogonadism of the Cushing syndrome. Conversely, estrogen directly stimulates the CRH gene promoter and the central noradrenergic system, which may explain adult women's slight hypercortisolism; preponderance of affective, anxiety, and eating disorders; and mood cycles and vulnerability to autoimmune and inflammatory disease, both of which follow estradiol fluctuations. Several components of the hypothalamic-pituitary-adrenal axis and their receptors are present in reproductive tissues as autacoid regulators. These include ovarian and endometrial CRH, which may participate in the inflammatory processes of the ovary (ovulation and luteolysis) and endometrium (blastocyst implantation and menstruation), and placental CRH, which may participate in the physiology of pregnancy and the timing of labor and delivery. The hypercortisolism of the latter half of pregnancy can be explained by high levels of placental CRH in plasma. This hypercortisolism causes a transient postpartum adrenal suppression that, together with estrogen withdrawal, may partly explain the depression and autoimmune phenomena of the postpartum period.
Leptin communicates nutritional status to regulatory centers in the brain. Because peripheral leptin influences the activity of the highly pulsatile adrenal and gonadal axes, we sought to determine whether leptin levels in the blood are pulsatile. We measured circulating leptin levels every 7 minutes for 24 hours, in six healthy men, and found that total circulating leptin levels exhibited a pattern indicative of pulsatile release, with 32.0 +/- 1.5 pulses every 24 hours and a pulse duration of 32.8 +/- 1.6 minutes. We also show an inverse relation between rapid fluctuations in plasma levels of leptin and those of adrenocorticotropic hormone (ACTH) and cortisol that could not be accounted for on the basis of glucocorticoid suppression of leptin. As leptin levels are pulsatile, we propose that a key function of the CNS is regulated by a peripheral pulsatile signal. In a separate pilot study we compared leptin pulsatility in 414 plasma samples collected every 7 minutes for 24 hours from one obese woman and one normal-weight woman. We found that high leptin levels in the obese subject were due solely to increased leptin pulse height; all concentration-independent pulsatility parameters were almost identical in the two women. Leptin pulsatility therefore can be preserved in the obese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.