Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the ‘digital twin’ of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
We propose a novel, two-degree of freedom mathematical model of mechanical vibrations of the heart that generates heart sounds in CircAdapt, a complete real-time model of the cardiovascular system. Heart sounds during rest, exercise, biventricular (BiVHF), left ventricular (LVHF) and right ventricular heart failure (RVHF) were simulated to examine model functionality in various conditions. Simulated and experimental heart sound components showed both qualitative and quantitative agreements in terms of heart sound morphology, frequency, and timing. Rate of left ventricular pressure (LV dp/dtmax) and first heart sound (S1) amplitude were proportional with exercise level. The relation of the second heart sound (S2) amplitude with exercise level was less significant. BiVHF resulted in amplitude reduction of S1. LVHF resulted in reverse splitting of S2 and an amplitude reduction of only the left-sided heart sound components, whereas RVHF resulted in a prolonged splitting of S2 and only a mild amplitude reduction of the right-sided heart sound components. In conclusion, our hemodynamics-driven mathematical model provides fast and realistic simulations of heart sounds under various conditions and may be helpful to find new indicators for diagnosis and prognosis of cardiac diseases.
New & noteworthy
To the best of our knowledge, this is the first hemodynamic-based heart sound generation model embedded in a complete real-time computational model of the cardiovascular system. Simulated heart sounds are similar to experimental and clinical measurements, both quantitatively and qualitatively. Our model can be used to investigate the relationships between heart sound acoustic features and hemodynamic factors/anatomical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.