Due to their high strength, 7xxx aluminum sheets are increasingly used for structural automobile components. One of the major challenges is the formability of these alloys during the production process while retaining high strengths in service. One promising method is forming at elevated temperatures directly after solution annealing; this is known as hot forming. However, this thermomechanical process requires a detailed comprehension of the dissolution and precipitation behavior during heating, solution annealing, and subsequent combination of forming and cooling processes. Therefore, the kinetics of solid-solid phase transformations during continuous heating and continuous cooling of the aluminum alloys EN AW-7021 and EN AW-7075 were determined with differential scanning calorimetry and hardness testing. The suitable solution annealing conditions and the critical cooling rates were specified for both alloys and compared to the real hot forming processes.
Due to their high specific strength, EN AW-7xxx aluminium alloys are promising materials for reducing the weight of automotive structural parts. However, their formability at room temperature is poor due to pronounced natural ageing. Therefore, we investigated hot stamping and W-temper forming for EN AW-7075 and a modified variant of EN AW-7021. For hot stamping of the modified EN AW-7021, a low-temperature stabilisation heat treatment (pre-aging at 80 °C for 1 h) was incorporated into the process chain design to inhibit natural ageing after forming. The process chains were compared with respect to dimensional accuracy, mechanical properties, microstructure, precipitation status (assessed by differential scanning calorimetry) and crashworthiness. It was found that hot stamping is suitable to form failure-free parts with good dimensional accuracy for both alloys while W-temper forming suffers from springback. Within a time-span of 21 days after forming, hardness values of hot stamped and stabilised parts did not increase significantly. Compared to non-stabilised parts, stabilised parts also showed significantly improved folding behaviour in quasi-static compression testing and absorbed approximately 15% more energy.
Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end-of-life. Here, we develop π-conjugated polyimidazole particles, which we prepare using atom economic direct arylation adapted to a dis-persion polymerization protocol. The synthesis yields polyimidazole nanoparticles with tunable size and narrow dispersi-ty. In addition, the degree of crosslinking of the polymer particles can be controlled. We demonstrate that the polyimid-azole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslink-ing significantly improves the electrochemical processes and leads to clearer oxidation and reduction signals from the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bac-teria over the course of 72 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.