Hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia with fragmented erythrocytes, thrombocytopenia, and acute renal failure. Lack of complement inactivating factor H predisposes to the development of atypical HUS. Little is known about mechanisms linking complement activation with loss of erythrocyte integrity during HUS. Recent studies disclosed that increased cytosolic Ca2+ activity and cellular ceramide trigger programmed erythrocyte death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. In the present study, we investigated whether eryptosis occurs during the course of HUS. To this end, erythrocytes from healthy volunteers were exposed to plasma from a patient with severe idiopathic recurrent HUS secondary to factor H depletion. Phosphatidylserine exposure (Annexin binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3 fluorescence), and ceramide formation [anti-ceramide antibody and enzymatic (diacylgycerol kinase) analysis] were determined. Exposure of erythrocytes to plasma from the patient, but not to plasma from healthy individuals, triggered Annexin binding. The effect of plasma on erythrocyte Annexin binding was abolished by plasmapheresis or filtration at 30 kDa. It was paralleled by formation of ceramide and increase of cytosolic Ca2+ activity. Enhanced Annexin binding of erythrocytes from healthy individuals was observed after exposure to plasma from three other patients with HUS. The proeryptotic effect of patient plasma was mimicked by exposure to the Ca2+ ionophore ionomycin, and eryptosis was potentiated in the presence of cell membrane-permeable C6-ceramide. Furthermore, in vitro complement activation similarly triggered erythrocyte phosphatidylserine exposure, an effect which was blunted by the addition of factor H. In conclusion, our present observations disclose a novel, pathophysiological, factor-H dependent mechanism leading to injury of erythrocytes during the course of hemolytic uremic syndrome.
Anti-A IgG antibodies have previously been shown to stimulate Ca2+ entry into red blood cells. Increased cytosolic free Ca2+ concentration is known to trigger eryptosis, i.e. suicidal erythrocyte death, characterized by exposure of phosphatidylserine at the erythrocyte surface. As macrophages are equipped with phosphatidylserine receptors, they bind, engulf and degrade phosphatidylserine exposing cells. The present experiments have been performed to explore whether anti-A IgGs trigger phosphatidylserine exposure of erythrocytes. Phosphatidylserine exposure was estimated from annexin-V binding as determined in FACS analysis. Exposure to anti-A IgGs (0.5 µg/ml) indeed significantly increased annexin-V binding in erythrocytes with blood group A, but not in erythrocytes with blood group 0. According to Fluo3 fluorescence, anti-A IgGs increased cytosolic Ca2+ concentration. Whole cell patch clamp recordings revealed the activation of a Ca2+-permeable cation channel following treatment with anti-A-IgGs. Annexin-V binding following anti-A IgG exposure was blunted by Ca2+ removal while anti-A IgG-stimulated cation channel activity was not dependent on extracellular Ca2+. Osmotic shock (exposure of erythrocytes to 850 mOsm) increased annexin binding, an effect further enhanced by exposure to anti-A IgGs. In conclusion, anti-A IgGs activate erythrocyte cation channels leading to Ca2+ entry and subsequent erythrocyte cell membrane scrambling. The effect most likely contributes to the elimination of erythrocytes following an immune reaction against the A antigen.
Side effects of cyclosporine treatment include anemia. Most recent studies have found that anemia may be caused by triggering of suicidal erythrocyte death (eryptosis), i.e. activation of an erythrocyte scramblase and phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are rapidly cleared from circulating blood by phagocytosis. Stimulators of erythrocyte membrane scrambling include cytosolic Ca(2+) and ceramide, which are increased by entry through Ca2+-permeable cation channels and by activation of a sphingomyelinase, respectively. The present study has been performed to test for an effect of cyclosporine on eryptosis. Erythrocytes from healthy volunteers were exposed to cyclosporine, and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3-dependent fluorescence), ceramide formation (anti-ceramide-FITC antibody), and 45Ca2+ uptake were determined by flow cytometry and tracer flux measurements, respectively. Exposure of erythrocytes to cyclosporine triggered annexin V binding and significantly enhanced the increased annexin V binding both following glucose depletion and after hyperosmotic or isotonic cell shrinkage. However, cyclosporine significantly decreased cytosolic Ca2+ activity and did not stimulate 45Ca2+ uptake. Instead, cyclosporine transiently stimulated ceramide formation, decreased the cytosolic ATP concentration and potentiated the decline of cytosolic ATP concentration following glucose depletion. Elevated ceramide levels and ATP depletion, in turn, sensitize the erythrocytes for the eryptotic effects of Ca2+. The present observations may provide a mechanistic explanation for the anemia following treatment with this important immunosuppressive drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.