In 2016, the majority of full-time employed women in the U.S. earned significantly less than comparable men. The extent to which women were affected by gender inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status or educational attainment. In this paper, we analyzed data from the 2016 American Community Survey using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the gender wage gap. We found that the gap varied substantially across women and was driven primarily by marital status, having children at home, race, occupation, industry, and educational attainment. We recommend that policy makers use these insights to design policies that will reduce discrimination and unequal pay more effectively.
The R package DoubleML implements the double/debiased machine learning framework of . It provides functionalities to estimate parameters in causal models based on machine learning methods. The double machine learning framework consist of three key ingredients: Neyman orthogonality, high-quality machine learning estimation and sample splitting. Estimation of nuisance components can be performed by various state-of-the-art machine learning methods that are available in the mlr3 ecosystem. DoubleML makes it possible to perform inference in a variety of causal models, including partially linear and interactive regression models and their extensions to instrumental variable estimation. The object-oriented implementation of DoubleML enables a high flexibility for the model specification and makes it easily extendable. This paper serves as an introduction to the double machine learning framework and the R package DoubleML. In reproducible code examples with simulated and real data sets, we demonstrate how DoubleML users can perform valid inference based on machine learning methods.
Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential covariates or in the analysis of treatment heterogeneities. Also the evaluation of potentially more complicated (non-linear) functional forms of the regression relationship leads to many potential variables for which simultaneous inferential statements might be of interest. Here we provide a review of classical and modern methods for simultaneous inference in (high-dimensional) settings and illustrate their use by a case study using the R package hdm. The R package hdm implements valid joint powerful and efficient hypothesis tests for a potentially large number of coefficients as well as the construction of simultaneous confidence intervals and, therefore, provides useful methods to perform valid post-selection inference based on the LASSO. R and the package hdm are open-source software projects and can be freely downloaded from CRAN: http://cran.r-project.org. Contents
Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential covariates or in the analysis of treatment heterogeneities. Also the evaluation of potentially more complicated (non-linear) functional forms of the regression relationship leads to many potential variables for which simultaneous inferential statements might be of interest. Here we provide a review of classical and modern methods for simultaneous inference in (high-dimensional) settings and illustrate their use by a case study using the R package hdm. The R package hdm implements valid joint powerful and efficient hypothesis tests for a potentially large number of coefficients as well as the construction of simultaneous confidence intervals and, therefore, provides useful methods to perform valid post-selection inference based on the LASSO.
As a measure of gender inequality, the gender wage gap has come to play an important role both in academic research and the public debate. In 2016, the majority of full-time employed women in the United States earned significantly less than comparable men. The extent to which women were affected by gender inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status or educational attainment. In this paper, we analyse data from the 2016 American Community Survey using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the gender wage gap. We find that the wage gap varied substantially across women and that the magnitude of the gap varied primarily by marital status, having children at home, race, occupation, industry, and educational attainment. These insights are helpful in designing policies that can reduce discrimination and unequal pay more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.