We study the dynamics of a social network. Each node has to decide locally which other node it wants to befriend, i.e., to which other node it wants to create a connection in order to maximize its welfare, which is defined as the sum of the weights of incident edges. This allows us to model the cooperation between nodes where every node tries to do as well as possible. With the limitation that each node can only have a constant number of friends, we show that every local algorithm is arbitrarily worse than a globally optimal solution. Furthermore, we show that there cannot be a best local algorithm, i.e., for every local algorithm exists a social network in which the algorithm performs arbitrarily worse than some other local algorithm. However, one can combine a number of local algorithms in order to be competitive with the best of them. We also investigate a slightly different valuation variant. Nodes include another node's friends for their valuation. There are scenarios in which this does not converge to a stable state, i.e., the nodes switch friends indefinitely. We also analyze the consequences if ending a friendship permanently damages it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.