Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM)-signaling and thereby regulates diverse functions including platelet adhesion, aggregation and procoagulant activity. GPVI has been proposed as a safe antithrombotic target as its inhibition is protective in models of arterial thrombosis with only minor effects on hemostasis. Here, we demonstrate that genetic deficiency of platelet GPVI in mice decreases experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses show that mouse, as well as human GPVI, supports platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knock-out approach, we identified Galectin-3 as the major counter-receptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed Galectin-3 utilizes ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab)2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study reveals a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.
Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin.
Cerebral venous (sinus) thrombosis (CVT) is an unusual manifestation of venous thrombosis causing severe neurological impairment and seizures1,2. Molecular mechanisms underlying CVT, potentially involving pathological platelet activation, are unknown. Here we show that antibody-(INU1-fab)-induced cooperative signaling of two platelet receptors, C-type lectin-like receptor-2 (CLEC-2) and GPIIb/IIIa, triggers within minutes a CVT-like thrombotic syndrome in mice, characterized by tonic–myoclonic seizures, platelet consumption and death. Brain autopsy showed thrombi mainly in the cortical venules, but no intracranial hemorrhages or edema formation. Transcranial intravital microscopy revealed rapidly progressing thrombosis in the superior sagittal sinus, a main site of CVT in humans. Interfering with CLEC-2 signaling or inhibition of GPIIb/IIIa completely blocked platelet activation and CVT. Blocking GPIIb/IIIa after onset of neurological symptoms protected mice from platelet consumption, CVT and death, which was not seen after treatment with heparin. These results point to aberrant platelet activation as a major trigger of CVT and potential target for treatment.
Platelets are anucleate cells known for their essential function in hemostasis and formation of thrombi under pathologic conditions. In recent years, strong evidence emerged demonstrating the critical involvement of platelets in inflammatory processes including acute ischemic stroke (AIS), which is one of the leading causes of death and disability worldwide. Recanalization of the occluded brain artery to reconstitute cerebral blood flow is the primary goal in the treatment of stroke patients. However, despite successful reperfusion many patients show progression of infarct sizes, a phenomenon referred to as ischemia/reperfusion injury (I/RI). Cerebral I/RI involves both thrombotic as well as inflammatory pathways acting in concert to cause tissue damage, defining AIS as a prototypic thrombo-inflammatory disease. Currently used antiplatelet drugs applied to AIS patients eventually increase the risk of partially life-threatening hemorrhages, making more targeted pharmacological intervention necessary. Experimental evidence indicates that inhibition of platelet surface receptors that regulate initial platelet adhesion and activation might be suitable targets in thrombo-inflammatory settings, while inhibitors of platelet aggregation are not. In this review, we will summarize the recent developments in elucidating the role of the main platelet receptors in AIS and discuss their potential as pharmaceutical targets. Furthermore, we will also briefly discuss the important platelet-triggered intrinsic coagulation pathway with the pro-inflammatory kallikrein–kinin system in the context of ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.