Colorectal cancer (CRC) is one of the leading causes of cancer‐related deaths worldwide and the need for novel biomarkers and therapeutic strategies to improve diagnosis and surveillance is obvious. This study aims to identify β6‐integrin (ITGB6) as a novel serum tumor marker for diagnosis, prognosis, and surveillance of CRC. ITGB6 serum levels were validated in retro‐ and prospective CRC patient cohorts. ITGB6 serum levels were analyzed by ELISA. Using an initial cohort of 60 CRC patients, we found that ITGB6 is present in the serum of CRC, but not in non‐CRC control patients. A cut‐off of ≥2 ng/mL ITGB6 reveals 100% specificity for the presence of metastatic CRC. In an enlarged study cohort of 269 CRC patients, ITGB6 predicted the onset of metastatic disease and was associated with poor prognosis. Those data were confirmed in an independent, prospective cohort consisting of 40 CRC patients. To investigate whether ITGB6 can also be used for tumor surveillance, serum ITGB6‐levels were assessed in 26 CRC patients, pre‐ and post‐surgery, as well as during follow‐up visits. After complete tumor resection, ITGB6 serum levels declined completely. During follow‐up, a new rise in ITGB6 serum levels indicated tumor recurrence or the onset of new metastasis as confirmed by CT scan. ITGB6 was more accurate for prognosis of advanced CRC and for tumor surveillance as the established marker carcinoembryonic antigen (CEA). Our findings identify ITGB6 as a novel serum marker for diagnosis, prognosis, and surveillance of advanced CRC. This might essentially contribute to an optimized patient care.
Protein tyrosine phosphatase non-receptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC) as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. Particularly, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T-cells and increased PTPN2 levels negatively correlated with PD1, CTLA4, STAT1 and granzyme A. In vivo, T-cell and dendritic cell-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T-cells, as well as CD8+ T-cell infiltration and cytotoxicity into the tumor. In direct relevance to CRC treatment, T-cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced anti-tumor memory formation upon tumor re-challenge in vivo. Our data suggest a role for PTPN2 in suppressing anti-tumor immunity and promoting tumor development in CRC patients. Our in vivo results uncover PTPN2 as a key player in controlling immunogenicity of CRC, with the strong potential to be exploited to promote cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.