Aluminum containing Mn+1AXn (MAX) phase materials have attracted increasing attention due to their corrosion resistance, a pronounced self-healing effect and promising diffusion barrier properties for hydrogen. We synthesized Ti2AlN coatings on ferritic steel substrates by physical vapor deposition of alternating Ti- and AlN-layers followed by thermal annealing. The microstructure developed a {0001}-texture with platelet-like shaped grains. To investigate the oxidation behavior, the samples were exposed to a temperature of 700 °C in a muffle furnace. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) depth profiles revealed the formation of oxide scales, which consisted mainly of dense and stable α-Al2O3. The oxide layer thickness increased with a time dependency of ~t1/4. Electron probe micro analysis (EPMA) scans revealed a diffusion of Al from the coating into the substrate. Steel membranes with as-deposited Ti2AlN and partially oxidized Ti2AlN coatings were used for permeation tests. The permeation of deuterium from the gas phase was measured in an ultra-high vacuum (UHV) permeation cell by mass spectrometry at temperatures of 30–400 °C. We obtained a permeation reduction factor (PRF) of 45 for a pure Ti2AlN coating and a PRF of ~3700 for the oxidized sample. Thus, protective coatings, which prevent hydrogen-induced corrosion, can be achieved by the proper design of Ti2AlN coatings with suitable oxide scale thicknesses.
Friction modifier additive technologies play a crucial role in controlling friction and wear of lubricated tribological systems. Novel additives are usually evaluated using formulations of varying concentrations. It can be very difficult to understand the underlying mechanisms in those laboratory tests because of the interaction of base oil with the additives. It thus can be insightful to perform model experiments in a controllable atmosphere. This can be achieved for instance by integrating a tribometer into a vacuum system comprising in-situ surface analytical methods.In this work, a nitrogen containing organic friction modifier is adsorbed from the gas phase onto a Fe2O3 surface. Different coating thicknesses are prepared by varying the duration of the vapor deposition, so that the influence of the coating thickness on the friction behavior can be investigated. The chemical composition of the coated surfaces is also analyzed by coupling to an XPS photoelectron spectrometer.Contrary to the assumption that layers are formed, this friction modifier accumulates in droplets on the Fe2O3 surface. The number of droplets as well as the radii of droplets increase with evaporation time. The chemical composition of the additive does not change as a result of the gas phase deposition. In the friction tests, the smallest friction values are found for a very low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.Using gas phase adsorption of a nitrogen containing organic friction modifier it was possible to establish a correlation between droplet morphology and the friction behavior.
Friction modifier additive technologies play a crucial role in controlling friction and wear of lubricated tribological systems. Novel additives are usually evaluated using formulations of varying concentrations. It can be very difficult to understand the underlying mechanisms in those laboratory tests because of the interaction of base oil with the additives. It thus can be insightful to perform model experiments in a controllable atmosphere. This can be achieved for instance by integrating a tribometer into a vacuum system comprising in-situ surface analytical methods.In this work, a nitrogen containing organic friction modifier is adsorbed from the gas phase onto a Fe2O3 surface. Different coating thicknesses are prepared by varying the duration of the vapor deposition, so that the influence of the coating thickness on the friction behavior can be investigated. The chemical composition of the coated surfaces is also analyzed by coupling to an XPS photoelectron spectrometer.Contrary to the assumption that layers are formed, this friction modifier accumulates in droplets on the Fe2O3 surface. The number of droplets as well as the radii of droplets increase with evaporation time. The chemical composition of the additive does not change as a result of the gas phase deposition. In the friction tests, the smallest friction values are found for a very low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.Using gas phase adsorption of a nitrogen containing organic friction modifier it was possible to establish a correlation between droplet morphology and the friction behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.