The origin and course of the Neolithic on the Arabian Peninsula is the subject of an ongoing academic debate. Faunal data suggest an origin for domestication of animals in the Levant and these can be found in Arabia from the sixth millennium onwards. In contrast, lithic evidence does not support the hypothesis that Neolithic herders, accompanying their herds, spread over the entire Peninsula, as they did not leave significant traces of their material culture. Although Pre-Pottery Neolithic A (PPNA)/ PPNB influences can be traced across the northern part of Arabia, it is barely possible to observe them further south. By contrast, lithic technology in this region is characterised by major indigenous developments that might originate from a Pleistocene cultural heritage. By discussing the process of Neolithisation in Arabia from different points of view we can avoid the pitfalls of simplistic or monocausal models as well as preconceptions. Furthermore, we will be able to demonstrate that the Neolithic developed differently in different regions of the Arabian Peninsula.
Three small stone axes were collected by the joint Qatari-German South Qatar Survey Project (SQSP) at two places close to the eastern and western coast of Qatar in autumn 2012. Associated with settlement remains, flint artefacts and pieces of ʿUbaid pottery, the implements have been dated to the fifth millennium BCE. Nondestructive l-XRD 2 and l-XRF analyses could, for the first time, prove the use of hematite as the raw material for the manufacture of these tools in Arabia. The absence of major hematite sources in the region and the special characteristics of hematitea unique metallic shine of polished pieces and the blood-red colour that appears during the manufacturing processsuggest the highly symbolic character of these objects.
This paper presents the key findings of a multidisciplinary study investigating the nature and timing of coastal landscape evolution in eastern Saudi Arabia during the Holocene. To date, most sea level reconstructions for the Arabo-Persian Gulf are based on uncalibrated 14 C ages without correction for marine reservoir effects, or lack precision with regard to the effects of neotectonic changes, indicators of sea level used, errors in elevation of sedimentary units used, and the relationship with actual tides. As a consequence, the nature and timing of relative sea level (RSL) changes during the Late Pleistocene and Holocene remain poorly understood. To help address this, we use sea level index points (SLIPs) based on calibrated 14 C ages to present a RSL curve for the central-southern Gulf of Saudi Arabia from coastal sabkha deposits near the archaeological site of Dosariyah. The 2 sediments record rapid transgression during the early Holocene with a mid-Holocene high-stand immediately prior to 6880-6560 cal. BP when the upper limit for the palaeo Mean Highest High tide water (MHHW) was 2.8-3.10 m above present day mean sea level. Transgression continued until shortly after 5575-5310 cal. BP with an upper limit to the palaeo-MHHW of 3.75 m above present sea levels. Thereafter a fall in RSL was recorded, with the regression leading to the progradation of the coastal system and the development of coastal sabkhas.Nonetheless later transgressions are recorded in the region between 4848-4536 and 4335-3949 cal BP. Radiometric dating results from archaeological excavations at Dosariyah, one of the most important Neolithic coastal sites in the Gulf, suggest that occupation of the site during the Neolithic coincides with the mid-Holocene marine transgression (ca. 7200 -6500 cal. BP). Whilst the close proximity of the site to the sea may have facilitated maritime exchange activities, occupation of the site was short-lived and the phase of abandonment occurred during a period of rapid RSL rise, which would have transformed the area around Dosariyah into an island or certainly cut it off tidally from the mainland.
Abstract. Systematic archaeological exploration of southern Qatar started in the 1950s. However, detailed local and regional data on climatic fluctuations and landscape changes during the Holocene, pivotal for understanding and reconstructing human–environment interactions, are still lacking. This contribution provides an overview on the variability of geomorphic environments of southern Qatar with a focus on depression landforms, which reveal a rich archaeological heritage ranging from Palaeolithic(?) and Early Neolithic times to the Modern era. Based on a detailed geomorphic mapping campaign, sediment cores and optically stimulated luminescence data, the dynamics of riyad (singular rawdha; shallow, small-scale, sediment-filled karst depressions clustering in the central southern peninsula) and the larger-scale Asaila depression near the western coast are studied in order to put archaeological discoveries into a wider environmental context. Geomorphic mapping of the Asaila basin shows a much greater geomorphic variability than documented in literature so far with relict signs of surface runoff. An 8 m long sediment core taken in the sabkha-type sand flats of the western basin reveals a continuous dominance of aeolian morphodynamics during the early to mid-Holocene. Mounds preserved by evaporite horizons representing capillarites originally grown in the vadose zone are a clear sign of groundwater-level drop after the sea-level highstand ca. 6000–4500 years ago. Deflation followed the lowering of the Stokes surface, leaving mounds where the relict capillarites were able to fixate and preserve the palaeo-surface. Abundant archaeological evidence of Early and Middle Neolithic occupation – the latter with a clear focus inside the central Asaila basin – indicate more favourable living conditions than today. In contrast, the sediment record of the investigated riyad in the south is very shallow, younger and controlled by surface discharge, deflation and the constantly diminishing barchan dune cover in Qatar over the Middle and Late Holocene. The young age of the infill (ca. 1500 to 2000 years) explains the absence of findings older than the Late Islamic period. Indicators of current net deflation may relate to a decrease in surface runoff and sediment supply only in recent decades to centuries. In the future, geophysical prospection of the riyad may help to locate thicker sedimentary archives and the analysis of grain size distribution, micromorphology, phytoliths or even pollen spectra may enhance our understanding of the interplay of regional environmental changes and cultural history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.