We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.
Dispersal between different habitats influences the dynamics and stability of populations considerably. Furthermore, these effects depend on the local interactions of a population with other species. Here, we perform a general and comprehensive study of the simplest possible system that includes dispersal and local interactions, namely a 2-patch 2-species system. We evaluate the impact of dispersal on stability and on the occurrence of bifurcations, including pattern forming bifurcations that lead to spatial heterogeneity, in 19 different classes of models with the help of the generalized modelling approach. We find that dispersal often destabilizes equilibria, but it can stabilize them if it increases population losses. If dispersal is nonrandom, i.e. if emigration or immigration rates depend on population densities, the correlation of stability with dispersal rates is positive in part of the models. We also find that many systems show all four types of bifurcations and that antisynchronous oscillations occur mostly with nonrandom dispersal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.