The majority of metastases (62%) were 5-AIF positive, suggesting a potential impact of 5-AIF for improved visualization of metastatic tumor tissue within the brain. However, residual 5-AIF after macroscopically complete resection of a metastasis needs to be interpreted with caution because of the limited specificity for detection of residual tumor tissue.
Summary
Previous research has demonstrated that uplifting‐column or rocking building systems may exhibit improved seismic performance, including reductions in total base shear and decreased residual drift, when compared with systems rigidly connected to the foundation. These beneficial effects may be due to lengthened periods, activation of rocking modes, and energy dissipation of base fuse elements. In the current work, several configurations of a miniature steel building with different combinations of base connection and traditional superstructure fuse strength and stiffness were subjected to identical earthquake motions to evaluate differences in demands and performance. The uplifting base connections incorporate highly ductile concrete anchors with long stretch lengths, allowing robust connection performance and easy replacement of damaged connection elements following the seismic event, an advantage over previously tested systems. Testing and dynamic numerical analysis indicates that ductile anchor uplifting systems may reduce total base shear by over 20%, as well as reducing residual structural drift by more than 80%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.