Plants and animals produce reactive oxygen species (ROS) in response to infection. In plants, ROS not only activate defense responses and promote cell death to limit the spread of pathogens but also restrict the amount of cell death in response to pathogen recognition. Plants also use hormones, such as salicylic acid, to mediate immune responses to infection. However, there are long-lasting biotrophic plant-pathogen interactions, such as the interaction between parasitic nematodes and plant roots during which defense responses are suppressed and root cells are reorganized to specific nurse cell systems. In plants, ROS are primarily generated by plasma membrane-localized NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidases, and loss of NADPH oxidase activity compromises immune responses and cell death. We found that infection of Arabidopsis thaliana by the parasitic nematode Heterodera schachtii activated the NADPH oxidases RbohD and RbohF to produce ROS, which was necessary to restrict infected plant cell death and promote nurse cell formation. RbohD-and RbohF-deficient plants exhibited larger regions of cell death in response to nematode infection, and nurse cell formation was greatly reduced. Genetic disruption of SID2, which is required for salicylic acid accumulation and immune activation in nematode-infected plants, led to the increased size of nematodes in RbohD-and RbohF-deficient plants, but did not decrease plant cell death. Thus, by stimulating NADPH oxidase-generated ROS, parasitic nematodes fine-tune the pattern of plant cell death during the destructive root invasion and may antagonize salicylic acid-induced defense responses during biotrophic life stages.
Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.Arabidopsis thaliana | cell cycle | cytokinin | cyst nematode | IPT P lant-parasitic nematodes are a significant threat to almost all economically important crops. International surveys revealed an average annual crop yield loss of more than 10% due to nematode infestation and up to 20% for certain crops, e.g., bananas (1). Most of this damage is caused by the sedentary rootknot (Meloidogyne spp.) and cyst nematodes (Globodera spp. and Heterodera spp.). Infective second-stage juveniles (J2) of both rootknot nematodes (RKNs) and cyst nematodes invade plant roots near the tip and move toward the vascular cylinder. On reaching the vascular cylinder, RKNs induce the formation of several giant cells, whereas cyst nematodes induce the formation of a syncytium. These feeding sites serve as the nematode's sole source of nutrients throughout its life cycle for several weeks. Cyst nematodes are dimorphic, but the mechanism of sex determination is not clearly understood. It has, nonetheless, been observed that the environment strongly influences the outcome of the sex ratio in cyst nematodes. Under favorable conditions with plenty of nutrients, the majority of juveniles develop into females. However, when the juveniles are exposed to adverse conditions, as seen in resistant plants, the percentage of males increase...
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Plant-parasitic nematodes pose a significant threat to agriculture causing annual yield losses worth more than 100 billion US$. Nematode control often involves the use of nematicides, but many of them including non-selective fumigants have been phased out, particularly due to ecotoxicological concerns. Thus new control strategies are urgently needed. Spirotetramat (SPT) is used as phloem-mobile systemic insecticide targeting acetyl-CoA carboxylase (ACC) of pest insects and mites upon foliar application. However, in nematodes the mode of action of SPT and its effect on their development have not been studied so far. Our studies revealed that SPT known to be activated in planta to SPT-enol acts as a developmental inhibitor of the free-living nematode Caenorhabditis elegans and the plant-parasitic nematode Heterodera schachtii . Exposure to SPT-enol leads to larval arrest and disruption of the life cycle. Furthermore, SPT-enol inhibits nematode ACC activity, affects storage lipids and fatty acid composition. Silencing of H. schachtii ACC by RNAi induced similar phenotypes and thus mimics the effects of SPT-enol, supporting the conclusion that SPT-enol acts on nematodes by inhibiting ACC. Our studies demonstrated that the inhibition of de novo lipid biosynthesis by interfering with nematode ACC is a new nematicidal mode of action addressed by SPT, a well-known systemic insecticide for sucking pest control.
Plant-parasitic nematodes pose a significant threat to agriculture causing annual yield losses worth more than 100 billion US$. Nematode control often involves the use of nematicides, but many of them including non-selective fumigants have been phased out, particularly due to ecotoxicological concerns. Thus new control strategies are urgently needed. Spirotetramat (SPT) is used as phloemmoble systemic insecticide targeting acetyl-CoA carboxylase (ACC) of pest insects and mites upon foliar application. Our studies revealed that SPT known to be activated in planta to SPT-enol acts as a developmental inhibitor of the free-living nematode Caenorhabditis elegans and the plant-parasitic nematode Heterodera schachtii. Exposure to SPT-enol leads to larval arrest and disruption of the life cycle. Furthermore, SPT-enol inhibits nematode ACC activity, affects storage lipids, fatty acid composition and disrupts surface coat synthesis. Silencing of H. schachtii ACC by RNAi induced similar phenotypes and thus mimics the effects of SPT-enol, supporting the conclusion that SPT-enol acts on nematodes by inhibiting ACC. Our studies demonstrated that the inhibition of de novo lipid biosynthesis by interfering with nematode ACC is a new nematicidal mode of action addressed by spirotetramat, a well-known systemic insecticide for sucking pest control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.