To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.
We report on the experimental study and numerical analysis of chiral light-matter coupling in deterministically fabricated quantum dot (QD) waveguide structures. We apply in-situ electron beam lithography to deterministically integrate single InGaAs/GaAs QDs into GaAs-DBR waveguides to systematically explore the dependence of chiral coupling on the position of the QD inside the waveguide. By a series of micro-photoluminescence measurements, we determine the directionality contrast of emission into left and right traveling waveguide modes revealing a maximum of 0.93 for highly off-center QDs and an oscillatory dependence of this contrast on the QD position. In numerical simulations we obtain insight into chiral light-matter coupling by computing the light field emitted by a circularly polarized source and its overlap with multiple guided modes of the structure, which enables us to calculate directional β-factors for the quantum emitters. The calculated dependence of the directionality on the off-center QD position is in good agreement with the experimental data. It confirms the control of chiral effects in deterministically fabricated QD-waveguide systems with high potential for future non-reciprocal on-chip systems required for quantum information processing.
We study the impact of two-photon absorption (2PA) and fifth-order nonlinear loss such as 2PAinduced free-carrier absorption in semiconductors on the performance of Stimulated Brillouin Scattering devices. We formulate the equations of motion including effective loss coefficients, whose explicit expressions are provided for numerical evaluation in any waveguide geometry. We find that 2PA results in a monotonic, algebraic relationship between amplification, waveguide length and pump power, whereas fifth-order losses lead to a non-monotonic relationship. We define a figure of merit for materials and waveguide designs in the presence of fifth-order losses. From this, we determine the optimal waveguide length for the case of 2PA alone and upper bounds for the total Stokes amplification for the case of 2PA as well as fifth-order losses. The analysis is performed analytically using a small-signal approximation and is compared to numerical solutions of the full nonlinear modal equations.
We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.