To manage complex aortic arch disease using minimally invasive techniques, interventionalists have reported the use of multiple stent-graft devices deployed in a parallel configuration. The structural devicedevice and device-artery interactions arising during aortic arch parallel endografting, also known as chimney thoracic endovascular aortic repair (ch-TEVAR), is not well understood. Through the use of a radial force testing system we sought to characterise both the loading and deformation behaviour of parallel endografts in representative ch-TEVAR configurations. Four commercially available devices (Bentley BeGraft, Gore TAG, Gore Viabahn, and Medtronic Valiant) were subjected to uniform radial load individually, and in six combinations, to quantify loading profiles. Image data collected during testing were analysed to evaluate mechanical deformations in terms of gutters, chimney and main endograft compression, as well as graft infolding. Parallel endografting was found to increase radial loads when compared to standard TEVAR. Chronic outward force during ch-TEVAR was dependent on main endograft manufacturer, with TAG combinations leading to consistently higher loads than Valiant, but independent of chimney graft type. Endograft deformations were dependent on chimney graft type, with Viabahn combinations presenting with lower gutter areas and increased lumen compression than BeGraft. Chimney graft deformations were also influenced by deployment arrangement in the case of double ch-TEVAR. This study emphasizes the significant variability in both radial loads and mechanical deformations between clinically relevant ch-TEVAR configurations.
While nickel-titanium (NiTi) is the primary shape memory alloy (SMA) used in endodontic instruments, restorative dental components so far have not been fabricated from SMAs. The flexibility of these materials may solve problems in implant prosthodontics resulting from non-parallel implant positions and transfer inaccuracies. Based on a prototype of a novel attachment system for implant overdentures, a finite element model was created and used for studying different loading situations and design parameters followed by numerical analysis aided design optimization. The results revealed that the basic design of the attachment is capable of compensating misalignments of supporting implants as well as transfer inaccuracies of a clinically relevant magnitude by accommodating the large deformations induced under masticatory loading upon martensitic phase transformation at almost constant stress. The application of NiTi resulted in the reduction of the reaction forces recorded in the surrounding of the supporting implant, as well, the reaction forces between male and female parts of the attachment system could be reduced which will minimize wear phenomena and subsequent maintenance costs. These effects were seen to be enhanced in the optimized design.
This work deals with modeling the mechanical behavior of thermoplastic polymers in the finite strain regime over a wide range of temperatures. Thereby, special emphasis is put on the incorporation of an initial anisotropy in terms of "frozen-in" molecular orientation which results from a preceding manufacturing process. A computational example is discussed which considers an injection molded plate undergoing inhomogeneous deformation (buckling) during re-heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.