By applying bulk forming processes on sheet metals, thin-walled functional components with locally restricted wall thickness variations can be manufactured by forming operations. Using tailored blanks with a modified sheet thickness gradient instead of conventional blanks, an efficient controlling of the material flow can be achieved. One possible process to manufacture these semi-finished parts is a flexible rolling process. Based on an established process strategy new results for steels of differing strength and work-hardening behavior are presented in this paper. The influences of each material on the resulting process forces and blank properties regarding the same target geometry are discussed. The tailored blanks are hereby analyzed by their geometrical dimensions, like sheet thickness, and their mechanical properties, e.g. hardness distribution. Additionally, the possibilities of processing these tailored blanks in a deep-drawing and upsetting process are presented with a hereby focus on the residual formability of the tailored blanks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.