The most advanced solar thermochemical cycles in terms of demonstrated reactor efficiencies are based on temperature swing operated receiver-reactors with open porous ceria foams as a redox material. The demonstrated efficiencies are encouraging but especially for cycles based on ceria as the redox material, studies have pointed out the importance of high solid heat recovery rates to reach competitive process efficiencies. Different concepts for solid heat recovery have been proposed mainly for other types of reactors, and demonstration campaigns have shown first advances. Still, solid heat recovery remains an unsolved challenge. In this study, chances and limitations for solid heat recovery using a thermal storage unit with gas as heat transfer fluid are assessed. A numerical model for the reactor is presented and used to analyze the performance of a storage unit coupled to the reactor. The results show that such a concept could decrease the solar energy demand by up to 40% and should be further investigated.
In solar thermochemical redox cycles for H2O/CO2-splitting, a large portion of the overall energy demand of the system is associated with heating the redox material from the oxidation temperature to the reduction temperature. Hence, an important measure to improve the efficiency is recuperation of sensible heat stored in the redox material. A solid-solid heat exchanger can be subject to undesirable oxygen crossover, which decreases the oxygen uptake capacity of the redox material and consequently the system efficiency. We investigate the extent of this crossover in ceria based cycles, to identify, under which conditions a heat exchanger that allows oxygen crossover can improve the system efficiency. In a thermodynamic analysis we calculate the amount of transferred oxygen as a function of the heat exchanger efficiency and show the system efficiency of such a concept. A second law analysis is applied to the model to check the feasibility of calculated points of operation. For the investigated parameter set the heat exchanger design improves the system efficiency by a factor of up to 2.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.