Due to their many advantages, flexible structures are increasingly being used as guide and transmission elements in handling systems. Prismatic solidstate joints with a concentrated cross-sectional reduction are predominantly used as flexure pivots for both microscopic and macroscopic designs. A transfer of these geometries to applications in cryogenic working environments is not easily possible at temperatures below -130 °C due to the changed material properties. In this paper, the further development of s wivel joints as cascaded solid state joints for such a cryogenic environment is illustrated by the targeted adaptation of certain joint parameters and dimensions. By means of a comprehensive FEM simulation, it can be shown how the influence of specific parameters affects movement accuracy, process forces and shape stability and to what extent these geometric parameters influence each other in their effect.
The combined structural and dimensional synthesis is a tool for finding the robot structure that is suited best for a given task by means of global optimization. The handling task in cryogenic environments gives strong constraints on the robot synthesis, which are translated by an engineering design step into the combined synthesis algorithm. This allows to reduce the effort of the combined synthesis, which provides concepts for alternative robot designs and indications on how to modify the existing design prototype, a linear Delta robot with flexure hinges. Promising design candidates are the 3PRRU and 3PRUR, which outperform the linear Delta (3PUU) regarding necessary actuator force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.