BACKGROUND: Cell-free DNA (cfDNA) from grafts in the circulation of transplant recipients is a potential biomarker of rejection. Its usefulness was investigated after heart transplantation during the maintenance phase by use of microarrays and massive parallel sequencing of donor and recipient DNA. Disadvantages of these methods are high costs, long turnaround times, and need for donor DNA. Therefore, we sought to develop a rapid and cost-effective method using digital droplet PCR (ddPCR).
BackgroundGraft-derived cell-free DNA (GcfDNA), which is released into the blood stream by necrotic and apoptotic cells, is a promising noninvasive organ integrity biomarker. In liver transplantation (LTx), neither conventional liver function tests (LTFs) nor immunosuppressive drug monitoring are very effective for rejection monitoring. We therefore hypothesized that the quantitative measurement of donor-derived cell-free DNA (cfDNA) would have independent value for the assessment of graft integrity, including damage from acute rejection.Methods and findingsTraditional LFTs were performed and plasma GcfDNA was monitored in 115 adults post-LTx at three German transplant centers as part of a prospective, observational, multicenter cohort trial. GcfDNA percentage (graft cfDNA/total cfDNA) was measured using droplet digital PCR (ddPCR), based on a limited number of predefined single nucleotide polymorphisms, enabling same-day turn-around. The same method was used to quantify blood microchimerism. GcfDNA was increased >50% on day 1 post-LTx, presumably from ischemia/reperfusion damage, but rapidly declined in patients without graft injury within 7 to 10 d to a median <10%, where it remained for the 1-y observation period. Of 115 patients, 107 provided samples that met preestablished criteria. In 31 samples taken from 17 patients during biopsy-proven acute rejection episodes, the percentage of GcfDNA was elevated substantially (median 29.6%, 95% CI 23.6%–41.0%) compared with that in 282 samples from 88 patients during stable periods (median 3.3%, 95% CI 2.9%–3.7%; p < 0.001). Only slightly higher values (median 5.9%, 95% CI 4.4%–10.3%) were found in 68 samples from 17 hepatitis C virus (HCV)–positive, rejection-free patients. LFTs had low overall correlations (r = 0.28–0.62) with GcfDNA and showed greater overlap between patient subgroups, especially between acute rejection and HCV+ patients. Multivariable logistic regression modeling demonstrated that GcfDNA provided additional LFT-independent information on graft integrity. Diagnostic sensitivity and specificity were 90.3% (95% CI 74.2%–98.0%) and 92.9% (95% CI 89.3%–95.6%), respectively, for GcfDNA at a threshold value of 10%. The area under the receiver operator characteristic curve was higher for GcfDNA (97.1%, 95% CI 93.4%–100%) than for same-day conventional LFTs (AST: 95.7%; ALT: 95.2%; γ-GT: 94.5%; bilirubin: 82.6%). An evaluation of microchimerism revealed that the maximum donor DNA in circulating white blood cells was only 0.068%. GcfDNA percentage can be influenced by major changes in host cfDNA (e.g., due to leukopenia or leukocytosis). One limitation of our study is that exact time-matched GcfDNA and LFT samples were not available for all patient visits.ConclusionsIn this study, determination of GcfDNA in plasma by ddPCR allowed for earlier and more sensitive discrimination of acute rejection in LTx patients as compared with conventional LFTs. Potential blood microchimerism was quantitatively low and had no significant influence on GcfDNA value. Further r...
High-quality genomic analysis is critical for personalized pharmacotherapy in patients with cancer. Tumor-specific genomic alterations can be identified in cell-free DNA (cfDNA) from patient blood samples and can complement biopsies for real-time molecular monitoring of treatment, detection of recurrence, and tracking resistance. cfDNA can be especially useful when tumor tissue is unavailable or insufficient for testing. For blood-based genomic profiling, next-generation sequencing (NGS) and droplet digital PCR (ddPCR) have been successfully applied. The US Food and Drug Administration (FDA) recently approved the first such "liquid biopsy" test for EGFR mutations in patients with non-small cell lung cancer (NSCLC). Such non-invasive methods allow for the identification of specific resistance mutations selected by treatment, such as EGFR T790M, in patients with NSCLC treated with gefitinib. Chromosomal aberration pattern analysis by low coverage whole genome sequencing is a more universal approach based on genomic instability. Gains and losses of chromosomal regions have been detected in plasma tumor-specific cfDNA as copy number aberrations and can be used to compute a genomic copy number instability (CNI) score of cfDNA. A specific CNI index obtained by massive parallel sequencing discriminated those patients with prostate cancer from both healthy controls and men with benign prostatic disease. Furthermore, androgen receptor gene aberrations in cfDNA were associated with therapeutic resistance in metastatic castration resistant prostate cancer. Change in CNI score has been shown to serve as an early predictor of response to standard chemotherapy for various other cancer types (e.g. NSCLC, colorectal cancer, pancreatic ductal adenocarcinomas). CNI scores have also been shown to predict therapeutic responses to immunotherapy. Serial genomic profiling can detect resistance mutations up to 16 weeks before radiographic progression. There is a potential for cost savings when ineffective use of expensive new anticancer drugs is avoided or halted. Challenges for routine implementation of liquid biopsy tests include the necessity of specialized personnel, instrumentation, and software, as well as further development of quality management (e.g. external quality control). Validation of blood-based tumor genomic profiling in additional multicenter outcome studies is necessary; however, cfDNA monitoring can provide clinically important actionable information for precision oncology approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.