Subject of this paper is the derivation of a new constitutive law in terms of the logarithm of the conformation tensor that can be used as a full substitute for the 2D governing equations of the Oldroyd-B, Giesekus and other models. One of the key features of these new equations is that - in contrast to the original log-conf equations given by Fattal and Kupferman (2004) - these constitutive equations combined with the Navier-Stokes equations constitute a self-contained, non-iterative system of partial differential equations. In addition to its potential as a fruitful source for understanding the mathematical subtleties of the models from a new perspective, this analytical description also allows us to fully utilize the Newton-Raphson algorithm in numerical simulations, which by design should lead to reduced computational effort. By means of the confined cylinder benchmark we will show that a finite element discretization of these new equations delivers results of comparable accuracy to known methods.Comment: 21 pages, 5 figure
We explore a vexing benchmark problem for viscoelastic fluid flows with the discontinuous Petrov-Galerkin (DPG) finite element method of Demkowicz and Gopalakrishnan [1,2]. In our analysis, we develop an intrinsic a posteriori error indicator which we use for adaptive mesh generation. The DPG method is useful for the problem we consider because the method is inherently stable---requiring no stabilization of the linearized discretization in order to handle the advective terms in the model. Because stabilization is a pressing issue in these models, this happens to become a very useful property of the method which simplifies our analysis. This built-in stability at all length scales and the a posteriori error indicator additionally allows for the generation of parameter-specific meshes starting from a common coarse initial mesh. A DPG discretization always produces a symmetric positive definite stiffness matrix. This feature allows us to use the most efficient direct solvers for all of our computations. We use the Camellia finite element software package [3,4] for all of our analysis.Comment: 20 pages, 18 figures, 6 table
This is the accepted version of the following article: Stavrev, A., Knechtges, P., Elgeti, S., and Huerta, A. (2016) Space-time NURBS-enhanced finite elements\ud for free-surface flows in 2D., Int. J. Numer. Meth. Fluids, doi: 10.1002/fld.4189, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/fld.4189/abstractThe accuracy of numerical simulations of free-surface flows depends strongly on the computation of geometric quantities like normal vectors and curvatures. This geometrical information is additional to the actual degrees of freedom and usually requires a much finer discretization of the computational domain than the flow solution itself. Therefore, the utilization of a numerical method, which uses standard functions to discretize the unknown function in combination with an enhanced geometry representation is a natural step to improve the simulation efficiency. An example of such method is the NURBS-enhanced finite element method (NEFEM), recently proposed by Sevilla et al. The current paper discusses the extension of the spatial NEFEM to space-time methods and investigates the application of space-time NURBS-enhanced elements to free-surface flows. Derived is also a kinematic rule for the NURBS motion in time, which is able to preserve mass conservation over time. Numerical examples show the ability of the space-time NEFEM to account for both pressure discontinuities and surface tension effects and compute smooth free-surface forms. For these examples, the advantages of the NEFEM compared with the classical FEM are shown.Peer ReviewedPostprint (author's final draft
The stable and efficient numerical simulation of viscoelastic flows has been a constant struggle due to the High Weissenberg Number Problem. While the stability for macroscopic descriptions could be greatly enhanced by the log-conformation method as proposed by Fattal and Kupferman, the application of the efficient Newton-Raphson algorithm to the full monolithic system of governing equations, consisting of the log-conformation equations and the Navier-Stokes equations, has always posed a problem. In particular, it is the formulation of the constitutive equations by means of the spectral decomposition that hinders the application of further analytical tools. Therefore, up to now, a fully monolithic approach could only be achieved in two dimensions, as, e.g., recently shown in [P. Knechtges, M. Behr, S. Elgeti, Fully-implicit log-conformation formulation of constitutive laws, J. Non-Newtonian Fluid Mech. 214 (2014) 78-87].The aim of this paper is to find a generalization of the previously made considerations to three dimensions, such that a monolithic Newton-Raphson solver based on the log-conformation formulation can be implemented also in this case. The underlying idea is analogous to the two-dimensional case, to replace the eigenvalue decomposition in the constitutive equation by an analytically more "well-behaved" term and to rely on the eigenvalue decomposition only for the actual computation. Furthermore, in order to demonstrate the practicality of the proposed method, numerical results of the newly derived formulation are presented in the case of the sedimenting sphere and ellipsoid benchmarks for the Oldroyd-B and Giesekus models. It is found that the expected quadratic convergence of Newton's method can be achieved.
In order to cope with the exponential growth in available data, the efficiency of data analysis and machine learning libraries have recently received increased attention. Although corresponding array-based numerical kernels have been significantly improved, most are limited by the resources available on a single computational node. Consequently, kernels must exploit distributed resources, e.g., distributed memory architectures. To this end, we introduce HeAT, an array-based numerical programming framework for large-scale parallel processing with an easy-to-use NumPy-like API. HeAT utilizes PyTorch as a nodelocal eager execution engine and distributes the workload via MPI on arbitrarily large high-performance computing systems. It provides both low-level array-based computations, as well as assorted higher-level algorithms. With HeAT, it is possible for a NumPy user to take advantage of their available resources, significantly lowering the barrier to distributed data analysis. Compared with applications written in similar frameworks, HeAT achieves speedups of up to two orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.