This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility (Vis) and ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are also functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in-situ observations at the surface and in the cloud, as well as aircraft and Unmanned Aerial Vehicles (UAV) mounted sensors, are becoming more common. Because of prediction issues at smaller time and space scales (e.g., <1 km), meteorological forecasts from NWP models need to be continuously improved. Aviation weather forecasts also need to be developed to provide information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges.
Abstract-Airport operations are sensitive to visibility conditions. Low-visibility events may lead to capacity reduction, delays and economic losses. Different levels of low-visibility procedures (lvp) are enacted to ensure aviation safety. A nowcast of the probabilities for each of the lvp categories helps decision makers to optimally schedule their operations. An ordered logistic regression (OLR) model is used to forecast these probabilities directly. It is applied to cold season forecasts at Vienna International Airport for lead times of 30-min out to 2 h. Model inputs are standard meteorological measurements. The skill of the forecasts is accessed by the ranked probability score. OLR outperforms persistence, which is a strong contender at the shortest lead times. The ranked probability score of the OLR is even better than the one of nowcasts from human forecasters. The OLR-based nowcasting system is computationally fast and can be updated instantaneously when new data become available.
Abstract-Low-visibility conditions at airports can lead to capacity reductions and, therefore, to delays or cancelations of arriving and departing flights. Accurate visibility forecasts are required to keep the airport capacity as high as possible. We generate probabilistic nowcasts of low-visibility procedure (lvp) states, which determine the reduction of the airport capacity due to low visibility. The nowcasts are generated with tree-based statistical models based on highly-resolved meteorological observations at the airport. Short computation times of these models ensure the instantaneous generation of new predictions when new observations arrive. The tree-based ensemble method boosting provides the highest benefit in forecast performance. For lvp forecasts with lead times shorter than 1 h variables with information of the current lvp state, ceiling, and horizontal visibility are most important. With longer lead times, visibility information of the airport's vicinity and standard meteorological variables such as humidity also become relevant.
Abstract. Low-visibility conditions enforce special procedures that reduce the operational flight capacity at airports. Accurate and probabilistic forecasts of these capacity-reducing low-visibility procedure (lvp) states help the air traffic management in optimizing flight planning and regulation. In this paper, we investigate nowcasts, medium-range forecasts, and the predictability limit of the lvp states at Vienna International Airport. The forecasts are generated with boosting trees, which outperform persistence, climatology, direct output of numerical weather prediction (NWP) models, and ordered logistic regression. The boosting trees consist of an ensemble of decision trees grown iteratively on information from previous trees. Their input is observations at Vienna International Airport as well as output of a high resolution and an ensemble NWP model. Observations have the highest impact for nowcasts up to a lead time of +2 h. Afterwards, a mix of observations and NWP forecast variables generates the most accurate predictions. With lead times longer than +7 h, NWP output dominates until the predictability limit is reached at +12 d. For lead times longer than +2 d, output from an ensemble of NWP models improves the forecast more than using a deterministic but finer resolved NWP model. The most important predictors for lead times up to +18 h are observations of lvp and dew point depression as well as NWP dew point depression. At longer lead times, dew point depression and evaporation from the NWP models are most important.
Low-visibility conditions at airports can lead to capacity reductions and therefore to delays or cancelations of arriving and departing flights. Accurate visibility forecasts are required to keep airport capacity as high as possible. We generate probabilistic nowcasts of low-visibility procedure (lvp) states, which determine the reduction of airport capacity due to low visibility. The nowcasts are generated with tree-based statistical models based on highly resolved meteorological observations at the airport. Short computation times of these models ensure the instantaneous generation of new predictions when new observations arrive. The tree-based ensemble method boosting provides the highest benefit in forecast performance. For lvp forecasts with lead times shorter than 1 h, variables with information of the current lvp state, ceiling, and horizontal visibility are most important. With longer lead times, visibility information of the airport's vicinity and standard meteorological variables, such as humidity, also become relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.