Organic farming and agroforestry both have the potential to develop sustainable and environmental-friendly agroecosystems and to sequester more soil organic C (SOC). In a long-term field trial, we evaluated the effect of 21-year organic farming and 4-year agroforestry (Robinia and Poplar-based alley cropping system) on water extractable organic matter (WEOM). The technique combining excitation emission matrix (EEM) spectra with parallel factor analysis (PARAFAC) was used to reveal the components of WEOM. In addition, WEOM was characterized by UV absorbance and fluorescence spectra. Organic farming generally increased SOC and total N contents but decreased the WEOM content as well as the WEOM components indicated by the maximum fluorescence intensity (F max). Specific UV absorbance (SUVA) and humification index (HIX) of WEOM in organic farming implied WEOM in the organic farming had more components with aromatic structure but less humified. Higher fluorescence (FI) and freshness indices (BIX) of WEOM in organic farming system indicated that a higher percentage of WEOM was microbial-derived in the organic than in the integrated farming system. Robinia showed positive effect on SOC and total N contents in comparison with poplar and had stronger effects on the WEOM components, although the WEOM content did not differ between the two tree species. The significant farming × trees interactions on SOC and water extractable organic carbon (WEOC) indicated that the robinia effects were more pronounced in the organic farming system. Thus, the change of SOC was the result of interactive effect of farming and hedgerow trees in an agroforestry system. The low-input organic farming and robinia tended to result in change of quality of WEOM and led to enrichment of substances of high stability in WEOM. From above, the combination of organic farming and robinia trees is an important means for developing sustainable agricultural systems and soil carbon sequestration.
Combined application of organic and mineral fertilizers has been proposed as a measure for sustainable yield intensification and mitigation of greenhouse gas (GHG) emissions. However, fertilizer effects strongly depend on the soil type and still no precise information is available for Nitisols in Ethiopia. The study evaluated effects of different ratios of biowaste compost and mineral fertilizers (consisting of nitrogen (N), phosphorus (P), and sulphur (S)) on maize (Zea mays L. Bako-hybrid) yields in a two-year field trial. Soil samples from each treatment of the field trial were used to estimate emissions of nitrous oxide (N2O), carbon dioxide (CO2), methane (CH4), and microbial activity in a 28-day incubation experiment with two moisture levels (40% and 75% water-filled pore space, WFPS). The application of fertilizers corresponded to a N supply of about 100 kg ha−1, whereby the pure application of mineral fertilizers (100 min) was gradually replaced by compost. Maize yields were increased by 12 to 18% (p < 0.05) in the combined treatments of compost and mineral fertilizers compared to the 100 min treatment. The cumulative emissions of N2O and CO2 but not CH4 were affected by the fertilizer treatments and soil moisture levels (p < 0.05). At 75% WFPS, the N2O emissions in the 100 min treatment was with 16.3 g ha−1 more than twice as high as the treatment with 100% compost (6.4 g ha−1) and also considerably higher than in the 50% compost treatment (9.4 g ha−1). The results suggest that a compost application accounting for 40 to 70% of the N supply in the fertilizer combinations can be suitable to increase maize yields as well as to mitigate GHG emissions from Nitisols in Southwestern Ethiopia.
Background: Minimum tillage (MT) and organic farming (OF) are increasingly conducted in agricultural managements from the interest of optimizing soil conditions and developing sustainable agriculture. Our understanding of their effects on water-extractable organic matter (WEOM) is still insufficient.
Methods:To study the effects of MT and OF on WEOM, we analyzed soil materials sampled at two depths (0-8-cmupper soil and 12-25-cm-deeper soil) from long-term field experiments using different farming and tillage methods. The content, composition, and quality of WEOM were examined.
Results:The results showed organic farming significantly decreased water-extractable organic carbon and nitrogen, but had positive effect on WEOM humic-like components revealed by parallel factor analysis with excitation-emission matrix, soil organic carbon (SOC), total nitrogen (TN), as well as SOC/TN. In addition, organic farming increased the aromaticity and condensation of WEOM as indicated by specific UV absorption and humification index. MT had no effect on WEOM both quantitatively and qualitatively but significantly decreased SOC and TN of the whole investigated soil profile. The depth effect was significant with strong stratification of WEOM, WEOM components as well as SOC and total N in upper soil. Moreover, the WEOM spectroscopic quality showed sharp differences between the upper and deeper soils.
Conclusions:The results indicated that in the combined presence both tillage management and farming management, farming management imposed more influence on WEOM than tillage, and organic farming may facilitate the transformation of WEOM and lead to formation of WEOM with high stability. MT significantly changed the distribution of SOC and WEOM in soil, profile but did not increase the contents of SOC and WEOM in the site of the present study. However, the presence of larger pool of WEOM in MT + OF treatment at upper soil is likely to fuel possibly greater microbial activity and more rapid nutrient cycling in soil which can be favorable practice with potential in improving soil conditions in view of developing a sustainable ecosystem in the studied site
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.