Background: Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Methods: Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. Results: The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Conclusions: Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.
Pulmonary alveolar proteinosis (PAP) is a rare condition characterized by the accumulation of lipoproteinaceous material within air spaces. Although whole lung lavage is the current standard of care, recent advances in our understanding of PAP pathophysiology suggest that the disorder may benefit from inhalation of recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). The aim of this study was to determine the physical properties and bioactivity of rGM-CSF aerosolized by the highly efficient AKITA² APIXNEB® nebulizer system. The physical properties of aerosolised rGM-CSF were investigated in terms of droplet size, output and output rate by laser diffraction and gravimetrical analysis. Lung deposition was assessed using deposition modeling (ICRP). Molecular mass before and after aerosolisation was determined by SDS-PAGE, while the bioactivity of rGM-CSF was evaluated by measuring the GM-CSF-stimulated increase in pSTAT-5 using mAM-hGM-R cells. Ninety-six % of the rGM-CSF filling dose was aerosolized with the Akita 2 Apixneb® nebulizer system. Particle size was highly reproducible, and the amount deposited within the lung was 80.35% of the delivered dose. The aerosolisation did not alter the molecular structure of rGM-CSF, nor its ability to stimulate the pSTAT-5, which increased by 99.5%, similar to values for rGM-CSF prior to aerosolisation. We conclude that the highly efficient AKITA² APIXNEB® nebulizer system is likely to efficaciously deliver rGM-CSF to the airways of patients with autoimmune PAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.