Current approaches to visual object class detection mainly focus on the recognition of abstract object categories, such as cars, motorbikes, mugs and bottles. Although these approaches have demonstrated impressive performance in terms of recognition, their restriction to abstract categories seems artificial and inadequate in the context of embodied, cognitive agents. Here, distinguishing objects according to functional aspects based on object affordances is vital for a meaningful human-machine interaction. In this paper, we propose a complete system for the detection of functional object classes, based on a representation of visually distinct hints on object affordances (affordance cues). It spans the complete cycle from tutor-driven acquisition of affordance cues, one-shot learning of corresponding object models, and detecting novel instances of functional object classes in real images
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.