Here we present a novel assay for the separation and detection of amino-terminal amyloid-β (Aβ) peptide variants by capillary isoelectric focusing (CIEF) immunoassay. Specific amino-terminally truncated Aβ peptides appear to be generated by β-secretase (BACE1)-independent mechanisms and have previously been observed in cerebrospinal fluid (CSF) after BACE1 inhibitor treatment in an animal model. CIEF immunoassay sensitivity is sufficient to detect total Aβ in CSF without preconcentration. To analyze low-abundance amino-terminally truncated Aβ peptides from cell culture supernatants, we developed a CIEF-compatible immunoprecipitation protocol, allowing for selective elution of Aβ peptides with very low background. CIEF immunoassay and immunoprecipitation mass spectrometry analysis identified peptides starting at residue Arg(5) as the main amino-terminal Aβ variants produced in the presence of tripartite BACE1 inhibitor in our cell culture model. The CIEF immunoassay allows for robust relative quantification of Aβ peptide patterns in biological samples. To assess the future possibility of absolute quantification, we have prepared the Aβ peptides Aβ(x-10), Aβ(x-16), and Aβ(5-38(D23S)) by using solid phase peptide synthesis as internal standards for the CIEF immunoassay.
The neuropathological hallmarks of Alzheimer's disease include extracellular neuritic plaques and neurofibrillary tangles. The neuritic plaques contain β-amyloid peptides (Aβ peptides) as the major proteinaceous constituent and are surrounded by activated microglia and astrocytes as well as dystrophic neurites. N-terminally truncated forms of Aβ peptides are highly prevalent in neuritic plaques, including Aβ 3-x beginning at Glu eventually modified to pyroglutamate (Aβ N3pE-x), Aβ 2-x, Aβ 4-x, and Aβ 5-x. The precise origin of the different N-terminally modified Aβ peptides currently remains unknown. To assess the contribution of specific cell types to the formation of different N-terminally truncated Aβ peptides, supernatants from serum-free primary cell cultures of chicken neurons, astrocytes, and microglia, as well as human astrocytes, were analyzed by Aβ-ELISA and one- and two-dimensional SDS-urea polyacrylamide gel electrophoresis followed by immunoblot analysis. To evaluate the contribution of β- and γ-secretase to the generation of N-terminally modified Aβ, cultured astrocytes were treated with membrane-anchored "tripartite β-secretase (BACE1) inhibitors" and the γ-secretase inhibitor DAPT. Neurons, astrocytes, and microglia each exhibited cell type-specific patterns of secreted Aβ peptides. Neurons predominantly secreted Aβ peptides that begin at Asp1, whereas those released from astrocytes and microglia included high proportions of N-terminally modified Aβ peptides, presumably including Aβ 2/3-x and 4/5-x. The inhibition of BACE1 reduced the amount of Aβ 1-x in cell culture supernatants but not the amount of Aβ 2-x.
Covalent coupling of β-secretase inhibitors to a raftophilic lipid anchor via a suitable spacer by using solid-phase peptide synthesis leads to tripartite structures displaying substantially improved inhibition of cellular secretion of the β-amyloid peptide (Aβ). Herein, we describe a series of novel tripartite structures, their full characterization by NMR spectroscopy and mass spectrometry, and the analysis of their biological activity in cell-based assays. The tripartite structure concept is applicable to different pharmacophores, and the potency in terms of β-secretase inhibition can be optimized by adjusting the spacer length to achieve an optimal distance of the inhibitor from the lipid bilayer. A tripartite structure containing a transition-state mimic inhibitor was found to be less potent on Aβ generation from Swedish-mutant amyloid precursor protein (APP) than from the wild-type protein. Moreover, our observations suggest that specific variants of Aβ are generated from wild-type APP but not from Swedish-mutant APP and are resistant to β-secretase inhibition. Efficient inhibition of Aβ secretion by tripartite structures in the absence of appreciable neurotoxicity was confirmed in a primary neuronal cell culture, thus further supporting the concept.
Systematic variation of membrane anchor, spacer and pharmacophore building blocks leads to an optimisation of the inhibitory effect of tripartite structures towards BACE1-induced cleavage of the amyloid precursor protein (APP).
Analytical validation of a biomarker assay is essential before implementation in clinical practice can occur. In this study, we analytically validated the performance of assays detecting soluble amyloid-b precursor protein (sAPP) a and b in CSF in two laboratories according to previously standard operating procedures serving this goal. sAPPa and sAPPb ELISA assays from two vendors (IBL-international, Meso Scale Diagnostics) were validated. The performance parameters included precision, sensitivity, dilutional linearity, recovery, and parallelism. Inter-laboratory variation, biomarker comparison (sAPPa vs. sAPPb) and clinical performance was determined in three laboratories using 60 samples of patients with subjective memory complaints, Alzheimer's disease, or frontotemporal dementia. All performance parameters of the assays were similar between labs and within predefined acceptance criteria. The only exceptions were minor out-ofrange results for recovery at low concentrations and, despite being within predefined acceptance criteria, non-comparability of the results for evaluation of the dilutional linearity and hook-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.