In the group testing problem we aim to identify a small number of infected individuals within a large population. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out positive iff at least one individual in the group is infected. With all tests conducted in parallel, what is the least number of tests required to identify the status of all individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned to test groups randomly, with every individual joining an equal number of groups. We pinpoint the sharp threshold for the number of tests required in this randomised design so that it is information-theoretically possible to infer the infection status of every individual. Moreover, we analyse two efficient inference algorithms. These results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].
In the group testing problem the aim is to identify a small set of k ⁓ n
θ
infected individuals out of a population size n, 0 < θ < 1. We avail ourselves of a test procedure capable of testing groups of individuals, with the test returning a positive result if and only if at least one individual in the group is infected. The aim is to devise a test design with as few tests as possible so that the set of infected individuals can be identified correctly with high probability. We establish an explicit sharp information-theoretic/algorithmic phase transition minf for non-adaptive group testing, where all tests are conducted in parallel. Thus with more than minf tests the infected individuals can be identified in polynomial time with high probability, while learning the set of infected individuals is information-theoretically impossible with fewer tests. In addition, we develop an optimal adaptive scheme where the tests are conducted in two stages.
The Ising antiferromagnet is an important statistical physics model with close connections to the MAX CUT problem. Combining spatial mixing arguments with the method of moments and the interpolation method, we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously establish upper bounds on the MAX CUT of random regular graphs predicted by Zdeborová and Boettcher [Journal of Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassortative stochastic block model on random regular graphs coincides with the Kesten-Stigum bound.MSc: 05C80.Amin Coja-Oghlan and Philipp Loick are supported by DFG CO 646/3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.