In recent years, three‐dimensional density maps reconstructed from single particle images obtained by electron cryo‐microscopy (cryo‐EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de‐novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo‐EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main‐chain placement. Due to its high recall and precision rates of 95.1 % and 80.3 %, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP‐EM suite.
In recent years, three‐dimensional density maps reconstructed from single particle images obtained by electron cryo‐microscopy (cryo‐EM) have reached unprecedented resolution. However, map interpretation can be challenging, in particular if the constituting structures require de‐novo model building or are very mobile. Herein, we demonstrate the potential of convolutional neural networks for the annotation of cryo‐EM maps: our network Haruspex has been trained on a carefully curated set of 293 experimentally derived reconstruction maps to automatically annotate RNA/DNA as well as protein secondary structure elements. It can be straightforwardly applied to newly reconstructed maps in order to support domain placement or as a starting point for main‐chain placement. Due to its high recall and precision rates of 95.1 % and 80.3 %, respectively, on an independent test set of 122 maps, it can also be used for validation during model building. The trained network will be available as part of the CCP‐EM suite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.