Spin-based electronics has evolved into a major field of research that broadly encompasses different classes of materials, magnetic systems, and devices. This review describes recent advances in spintronics that have the potential to impact key areas of information technology and microelectronics. We identify four main axes of research: nonvolatile memories, magnetic sensors, microwave devices, and beyond-CMOS logic. We discuss state-of-the-art developments in these areas as well as opportunities and challenges that will have to be met, both at the device and system level, in order to integrate novel spintronic functionalities and materials in mainstream microelectronic platforms.Conventional information processing and communication devices work by controlling the flow of electric charges in integrated circuits. Such circuits are based on nonmagnetic semiconductors, in Technologies based on GMR and MTJ devices are now firmly established and compatible with CMOS fab processes. Yet, in order to meet the increasing demand for high-speed, high-density, and low power electronic components, the design of materials, processes, and spintronic circuits needs to be continuously innovated. Further, recent breakthroughs in basic research brought forward novel phenomena that allow for the generation and interconversion of charge, spin, heat, and optical signals.Many of these phenomena are based on non-equilibrium spin-orbit interaction effects, such as the spin Hall and Rashba-Edelstein effects 6,8,23 or their thermal 24 and optical 25,26 analogues. Spin-orbit torques (SOT), for example, can excite any type of magnetic materials, ranging from metals to semiconductors and insulators, in both ferromagnetic and antiferromagnetic configurations 6 . This versatility allows for the switching of single layer ferromagnets, ferrimagnets, and antiferromagnets, as well as for the excitation of spin waves and auto-oscillations in both planar and vertical device geometries 10,11 . Charge-spin conversion effects open novel pathways for information processing using Boolean logic, as well as promising avenues for implementing unconventional neuromorphic 27,28,29 and probabilistic 30 computing schemes. Finally, spintronic devices cover a broad bandwidth ranging from DC to THz 31,32 , leading to exciting opportunities for the on-chip generation and detection of high frequency signals.
We propose a nanoscale spin-wave directional coupler that allows the realization of magnonic integrated circuits.
Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific Topical ReviewOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics.Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an accurate snapshot of the world of magnetism in 2017.The article consists of 14 sections, each written by an expert in the field and addressing a specific subject on two pages. Evidently, the depth at which each contribution can describe the subject matter is limited and a full review of their statuses, advances, challenges and perspectives cannot be fully accomplished. Also, magnetism, as a vibrant research field, is too diverse, so that a number of areas will not be adequately represented here, leaving space for further Roadmap editions in the future. However, this 2017 Magnetism Roadmap article can provide a frame that will enable the reader to judge where each subject and magnetism research field stands overall today and which directions it might take in the foreseeable future.The first mater...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.