The semimetal MoTe2 is studied by spin-and angle-resolved photoemission spectroscopy to probe the detailed electronic structure underlying its broad range of response behavior. A novel spin-texture is uncovered in the bulk Fermi surface of the non-centrosymmetric structural phase that is consistent with first-principles calculations. The spin-texture is three-dimensional, both in terms of momentum dependence and spin-orientation, and is not completely suppressed above the centrosymmetry-breaking transition temperature. Two types of surface Fermi arc are found to persist well above the transition temperature. The appearance of a large Fermi arc depends strongly on thermal history, and the electron quasiparticle lifetimes are greatly enhanced in the initial cooling. The results indicate that polar instability with strong electron-lattice interactions exists near the surface when the bulk is largely in a centrosymmetric phase.
Magnetically doped topological insulators may produce novel states of electronic matter, where for instance the quantum anomalous Hall effect state can be realized. Pivotal to this goal is a microscopic control over the magnetic state, defined by the local electronic structure of the dopants and their interactions. We report on the magnetic coupling among Mn or Co atoms adsorbed on the surface of the topological insulator Bi 2 Te 3 . Our findings uncover the mechanisms of the exchange coupling between magnetic atoms coupled to the topological surface state in strong topological insulators. The combination of x-ray magnetic circular dichroism and ab initio calculations reveals that the sign of the magnetic coupling at short adatom-adatom distances is opposite for Mn with respect to Co. For both elements, the magnetic exchange reverses its sign at a critical distance between magnetic adatoms, as a result of the interplay between superexchange, double exchange and Ruderman-Kittel-Kasuya-Yoshida interactions.
The role of the crystal lattice, temperature and magnetic field for the spin structure formation in the 2D van der Waals magnet Fe5GeTe2 with magnetic ordering up to room temperature is a key open question. Using Lorentz transmission electron microscopy, we experimentally observe topological spin structures up to room temperature in the metastable pre-cooling and stable post-cooling phase of Fe5GeTe2. Over wide temperature and field ranges, skyrmionic magnetic bubbles form without preferred chirality, which is indicative of centrosymmetry. These skyrmions can be observed even in the absence of external fields. To understand the complex magnetic order in Fe5GeTe2, we compare macroscopic magnetometry characterization results with microscopic density functional theory and spin-model calculations. Our results show that even up to room temperature, topological spin structures can be stabilized in centrosymmetric van der Waals magnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.