Algorithms that compute locally optimal continuous designs often rely on a finite design space or on the repeated solution of difficult non-linear programs. Both approaches require extensive evaluations of the Jacobian Df of the underlying model. These evaluations are a heavy computational burden. Based on the Kiefer-Wolfowitz Equivalence Theorem, we present a novel design of experiments algorithm that computes optimal designs in a continuous design space. For this iterative algorithm, we combine an adaptive Bayes-like sampling scheme with Gaussian process regression to approximate the directional derivative of the design criterion. The approximation allows us to adaptively select new design points on which to evaluate the model. The adaptive selection of the algorithm requires significantly less evaluations of Df and reduces the runtime of the computations. We show the viability of the new algorithm on two examples from chemical engineering.
Algorithms which compute locally optimal continuous designs often rely on a finite design space or on repeatedly solving a complex non-linear program. Both methods require extensive evaluations of the Jacobian D f of the underlying model. These evaluations present a heavy computational burden. Based on the Kiefer-Wolfowitz Equivalence Theorem we present a novel design of experiments algorithm which computes optimal designs in a continuous design space. For this iterative algorithm we combine an adaptive Bayes-like sampling scheme with Gaussian process regression to approximate the directional derivative of the design criterion. The approximation allows us to adaptively select new design points on which to evaluate the model. The adaptive selection of the algorithm requires significantly less evaluations of D f and reduces the runtime of the computations. We show the viability of the new algorithm on two examples from chemical engineering.
Modelling real processes often results in several suitable models. In order to be able to distinguish, or discriminate, which model best represents a phenomenon, one is interested, e.g., in so-called T-optimal designs. These consist of the (design) points from a generally continuous design space at which the models deviate most from each other under the condition that they are best fitted to those points. Thus, the T-criterion represents a bi-level optimization problem, which can be transferred into a semi-infinite one but whose solution is very unstable or time consuming for non-linear models and non-convex lower- and upper-level problems. If one considers only a finite number of possible design points, a numerically well tractable linear semi-infinite optimization problem arises. Since this is only an approximation of the original model discrimination problem, we propose an algorithm which alternately and adaptively refines discretizations of the parameter as well as of the design space and, thus, solves a sequence of linear semi-infinite programs. We prove convergence of our method and its subroutine and show on the basis of discrimination tasks from process engineering that our approach is stable and can outperform the known methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.