KI-Anwendungsfälle zielgerichtet identifizieren Die Identifizierung von wertstiftenden Anwendungsfällen der künstlichen Intelligenz (KI) steht auf der Agenda vieler Unternehmen. Als Beweggründe gelten sowohl das Potenzial der KI, Wettbewerbsvorteile zu erlangen, als auch die Angst, hinter die Konkurrenz zurückzufallen. So scheinen umfangreiche Rechenressourcen, die Verfügbarkeit von Daten, aber auch technologische Durchbrüche beim maschinellen Lernen die Schleusen für die Anwendung von KI in Unternehmen geöffnet zu haben. Die neuen Möglichkeiten, Wettbewerbsvorteile zu erlangen, gehen jedoch mit der Gefahr einher, innovative KI-Anwendungsfälle zu übersehen oder sich auf weniger wertstiftende KI-Anwendungsfälle zu konzentrieren. Daher haben wir eine Methode entwickelt, die Unternehmen dabei unterstützt, wertstiftende KI-Anwendungsfälle zu identifizieren. Die Praxistauglichkeit und den Nutzen unserer Methode illustrieren wir anhand ihrer Durchführung im Kontext der EnBW AG.
The relevance of data-driven applications for leveraging knowledge embedded in data is growing. Thereby, an organization's capability to create, disseminate, and exploit knowledge (i.e., absorptive capacity) is a decisive factor in gaining competitive advantages. In this paper, we address the lack of guidance on the development and application of datadriven applications fostering an organization's absorptive capacity. Based on a structured literature review, we derive seven data-driven application capabilities and match them with an established conceptualization of absorptive capacity. While previous literature did not allow for a specific analysis, our functional representation concretely demonstrates how data-driven applications composed of separate capabilities can foster absorptive capacity in manifold ways. This paper contributes to the literature by providing a structured literature review on the impact of IT on absorptive capacity as well as introducing theoretically-based and modularized data-driven application capabilities.
Artificial Intelligence (AI) receives prominent attention within the innovation context. It is the most promising technological invention in information technology. Nevertheless, Innovation and Technology Management (ITM) so far could not structure the AI field, which offers a disruptive innovative potential. Thus, this paper reviews and analyzes the ITM literature and explains the underlying structure of AI. The findings present two main streams of AI literature and, furthermore, explain how to categorize AI use cases. With our results, we assist ITM in explaining and adopting AI to business, which is a huge challenge for companies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.