Cardiac amyloidosis (CA) is an infiltrative disease. In the present study, we compared the diagnostic accuracy of cardiovascular magnetic resonance (CMR)-based T1-mapping and subsequent extracellular volume fraction (ECV) measurement and longitudinal strain analysis in the same patients with (a) biopsy-proven cardiac amyloidosis (CA) and (b) hypertrophic cardiomyopathy (HCM). N = 30 patients with CA, N = 20 patients with HCM and N = 15 healthy control patients without relevant cardiac disease underwent dedicated CMR studies. The CMR protocol included standard sequences for cine-imaging, native and post-contrast T1-mapping and late-gadolinium-enhancement. ECV measurements were based on pre- and post-contrast T1-mapping images. Feature-tracking analysis was used to calculate 3D left ventricular longitudinal strain (LV-LS) in basal, mid and apical short-axis cine-images and to assess the presence of relative apical sparing. Receiver-operating-characteristic analysis revealed an area-under-the-curve regarding the differentiation of CA from HCM of 0.984 for native T1-mapping (p < 0.001), of 0.985 for ECV (p < 0.001) and only 0.740 for the “apical-to-(basal + midventricular)”-ratio of LV-LS (p = 0.012). A multivariable logistical regression analysis showed that ECV was the only statistically significant predictor of CA when compared to the parameter LV-LS or to the parameter “apical-to-(basal + midventricular)” LV-RLS-ratio. Native T1-mapping and ECV measurement are both superior to longitudinal strain measurement (with assessment of relative apical sparing) regarding the appropriate diagnosis of CA.
Objectives The purpose of this study was to carefully analyse the therapeutic benefit of tafamidis in patients with wild-type transthyretin amyloidosis (ATTRwt) and cardiomyopathy (ATTRwt-CM) after one year of therapy based on serial multi-parametric cardiovascular magnetic resonance (CMR) imaging. Background Non-sponsored data based on multi-parametric CMR regarding the effect of tafamidis on the cardiac phenotype of patients with ATTRwt-CM are not available so far. Methods The present study comprised N = 40 patients with ATTRwt-CM who underwent two serial multi-parametric CMR studies within a follow-up period of 12 ± 3 months. Baseline (BL) clinical parameters, serum biomarkers and CMR findings were compared to follow-up (FU) values in patients treated “with” tafamidis 61 mg daily (n = 20, group A) and those “without” tafamidis therapy (n = 20, group B). CMR studies were performed on a 1.5-T system and comprised cine-imaging, pre- and post-contrast T1-mapping and additional calculation of extracellular volume fraction (ECV) values. Results While left ventricular ejection fraction (LV-EF), left ventricular mass index (LVMi), left ventricular wall thickness (LVWT), native T1- and ECV values remained unchanged in the tafamidis group A, a slight reduction in LV-EF (p = 0.003) as well as a subtle increase in LVMi (p = 0.034), in LVWT (p = 0.001), in native T1- (p = 0.038) and ECV-values (p = 0.017) were observed in the untreated group B. Serum NT-proBNP levels showed an overall increase in both groups, however, with the untreated group B showing a relatively higher increase compared to the treated group A. Assessment of NYHA class did not result in significant intra-group differences when BL were compared with FU, but a trend to improvement in the treated group A compared to a worsening trend in the untreated group B (∆p = 0.005). Conclusion As expected, tafamidis does not improve cardiac phenotype in patients with ATTRwt-CM after one year of therapy. However, tafamidis seems to slow down cardiac disease progression in patients with ATTRwt-CM compared to those without tafamidis therapy based on multi-parametric CMR data already after one year of therapy.
Background Coronary microvascular dysfunction (CMD) is present in various non-ischemic cardiomyopathies and in particular in those with left-ventricular hypertrophy. This study evaluated the diagnostic value of the novel cardiovascular magnetic resonance (CMR) parameter “myocardial transit-time” (MyoTT) in distinguishing cardiac amyloidosis from other hypertrophic cardiomyopathies. Methods N = 20 patients with biopsy-proven cardiac amyloidosis (CA), N = 20 patients with known hypertrophic cardiomyopathy (HCM), and N = 20 control patients without relevant cardiac disease underwent dedicated CMR studies on a 1.5-T MR scanner. The CMR protocol comprised cine and late-gadolinium-enhancement (LGE) imaging as well as first-pass perfusion acquisitions at rest for MyoTT measurement. MyoTT was defined as the blood circulation time from the orifice of the coronary arteries to the pooling in the coronary sinus (CS) reflecting the transit-time of gadolinium in the myocardial microvasculature. Results MyoTT was significantly prolonged in patients with CA compared to both groups: 14.8 ± 4.1 s in CA vs. 12.2 ± 2.5 s in HCM ( p = 0.043) vs. 7.2 ± 2.6 s in controls ( p < 0.001). Native T1 and extracellular volume (ECV) were significantly higher in CA compared to HCM and controls ( p < 0.001). Both parameters were associated with a higher diagnostic accuracy in predicting the presence of CA compared to MyoTT: area under the curve (AUC) for native T1 = 0.93 (95% confidence interval (CI) = 0.83–1.00; p < 0.001) and AUC for ECV = 0.95 (95% CI = 0.88–1.00; p < 0.001)—compared to the AUC for MyoTT = 0.76 (95% CI = 0.60–0.92; p = 0.008). In contrast, MyoTT performed better than all other CMR parameters in differentiating HCM from controls (AUC for MyoTT = 0.93; 95% CI = 0.81–1.00; p = 0.003 vs. AUC for native T1 = 0.69; 95% CI = 0.44–0.93; p = 0.20 vs. AUC for ECV = 0.85; 95% CI = 0.66–1.00; p = 0.017). Conclusion The relative severity of CMD (measured by MyoTT) in relationship to extracellular changes (measured by native T1 and/or ECV) is more pronounced in HCM compared to CA—in spite of a higher absolute MyoTT value in CA patients. Hence, MyoTT may improve our understanding of the interplay between extracellular/intracellular and intravasal changes that occur in the myocardium during the disease course of different cardiomyopathies.
Background Peripheral artery disease (PAD) is frequently co‐prevalent with coronary artery disease (CAD) and diabetes (DM). The study aims to define the burden of CAD and/ or DM in PAD patients at moderate stages and further to evaluate its impact on therapy and outcome. Methods Study is based on health insurance claims data of the BARMER reflecting an unselected “real‐world” scenario. Retrospective analyses were based on 21 197 patients hospitalized for PAD Rutherford 1‐3 between 1 January 2009 to 31 December 2011, including a 4‐year follow‐up (median 775 days). Results In PAD patients, CAD is prevalent in 25.3% (n = 5355), DM in 23.5% (n = 4976), and both CAD and DM in 8.2% (n = 1741). Overall, in‐hospital mortality was 0.4%, being increased if CAD was present (CAD alone: OR 1.849; 95%‐CI 1.066‐3.208; DM alone: OR 1.028; 95%‐CI 0.520‐2.033; CAD and DM: OR 3.115; 95%‐CI 1.720‐5.641). Both, CAD and DM increased long‐term mortality (CAD alone: HR 1.234; 95%‐CI 1.106‐1.376; DM alone: HR 1.260; 95%‐CI 1.125‐1.412; CAD and DM: HR 1.76; 95%‐CI 1.552‐1.995). DM further increased long‐term amputation risk (DM alone: HR 2.238; 95%‐CI 1.849‐2.710; DM and CAD: HR 2.199; 95%‐CI 1.732‐2.792), whereas CAD (alone) did not. Conclusions In a greater perspective, the data identify also mild to modest stage PAD patients at particular risk for adverse outcomes in presence of CAD and/or DM. CAD and DM both are related with a highly increased risk of long‐term mortality even in intermittent claudication, and DM independently increased amputation risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.