The ORF15 isoform of RPGR (RPGR(ORF15)) and RPGR interacting protein 1 (RPGRIP1) are mutated in a variety of retinal dystrophies but their functions are poorly understood. Here, we show that in cultured mammalian cells both RPGR(ORF15) and RPGRIP1 localize to centrioles. These localizations are resistant to the microtubule destabilizing drug nocodazole and persist throughout the cell cycle. RPGR and RPGRIP1 also co-localize at basal bodies in cells with primary cilia. The C-terminal (C2) domain of RPGR(ORF15) (ORF15(C2)) is highly conserved across 13 mammalian species, suggesting that it is a functionally important domain. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we show that this domain interacts with a 40 kDa shuttling protein nucleophosmin (NPM). The RPGR(ORF15)-NPM interaction was confirmed by (i) yeast two-hybrid analyses; (ii) binding of both recombinant and native HeLa cell NPM to RPGR(ORF15) fusion proteins in vitro; (iii) co-immunoprecipitation of native NPM, RPGR(ORF15) and RPGRIP1 from bovine retinal extracts and of native HeLa cell NPM and transfected RPGR(ORF15) from cultured cells and (iv) co-localization of NPM and RPGR(ORF15) at metaphase centrosomes in cultured cells. NPM is a multifunctional protein chaperone that shuttles between the nucleoli and the cytoplasm and has been associated with licensing of centrosomal division. RPGR and RPGRIP1 join a growing number of centrosomal proteins involved in human disease.
Centrins are members of a highly conserved subgroup of the EF-hand superfamily of Ca(2+)-binding proteins commonly associated with centrosome-related structures. In the retina, centrins are also prominent components of the photoreceptor cell ciliary apparatus. Centrin isoforms are differentially localized at the basal body and in the lumen of the connecting cilium. All molecular exchanges between the inner and outer segments occur through this narrow connecting cilium. Ca(2+)-activated centrin isoforms bind to the visual heterotrimeric G-protein transducin via an interaction with the betagamma-subunit. Ca(2+)-dependent assemblies of centrin/G-protein complexes may regulate the transducin movement through the connecting cilium. Formation of this complex represents a novel mechanism in regulation of translocation of signaling proteins in sensory cells, as well as a potential link between molecular trafficking and signal transduction in general.
Centrins are Ca2+-binding EF-hand proteins. All four known centrin isoforms are expressed in the ciliary apparatus of photoreceptor cells. Cen1p and Cen2p bind to the visual G-protein transducin in a strictly Ca2+-dependent way, which is thought to regulate light driven movements of transducin between photoreceptor cell compartments. These relatively slow motile processes represent a novel paradigm in light adaptation of photoreceptor cells. Here we validated specific phosphorylation as a novel regulator of centrins in photoreceptors. Centrins were differentially phosphorylated during photoreceptor dark adaptation. Inhibitor treatments revealed protein kinase CK2 as the major protein kinase mediating phosphorylation of Cen1p, Cen2p and Cen4p, but not Cen3p, at a specific target sequence. CK2 and ciliary centrins co-localize in the photoreceptor cilium. Direct binding of CK2 and centrins to ciliary microtubules may spatially integrate the enzyme-substrate specificity in the cilium. Kinetic light-scattering assays revealed decreased binding affinities of phosphorylated centrins to transducin. Furthermore, we show that this decrease is based on the reduction of Ca2+-binding affinities of centrins. Present data describe a novel regulatory mechanism of reciprocal regulation of stimulus dependent distribution of signaling molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.