Motivation The importance of clinical data in understanding the pathophysiology of complex disorders has prompted the launch of multiple initiatives designed to generate patient-level data from various modalities. While these studies can reveal important findings relevant to the disease, each study captures different yet complementary aspects and modalities which, when combined, generate a more comprehensive picture of disease aetiology. However, achieving this requires a global integration of data across studies, which proves to be challenging given the lack of interoperability of cohort datasets. Results Here, we present the Data Steward Tool (DST), an application that allows for semi-automatic semantic integration of clinical data into ontologies and global data models and data standards. We demonstrate the applicability of the tool in the field of dementia research by establishing a Clinical Data Model (CDM) in this domain. The CDM currently consists of 277 common variables covering demographics (e.g. age and gender), diagnostics, neuropsychological tests, and biomarker measurements. The DST combined with this disease-specific data model shows how interoperability between multiple, heterogeneous dementia datasets can be achieved. Availability The DST source code and Docker images are respectively available at https://github.com/SCAI-BIO/data-steward and https://hub.docker.com/r/phwegner/data-steward. Furthermore, the DST is hosted at https://data-steward.bio.sca.fraunhofer.de/data-steward. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Epilepsy is a multi-faceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment, and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary. The presented ontology is designed to enable better interconnection between scientific community members in the epilepsy domain. Results The Epilepsy Ontology (EPIO) is an assembly of structured knowledge on various aspects of epilepsy, developed according to Basic Formal Ontology (BFO) and Open Biological and Biomedical Ontology (OBO) Foundry principles. Concepts and definitions are collected from the latest International League against Epilepsy (ILAE) classification, domain-specific ontologies, and scientific literature. This ontology consists of 1,879 classes and 28,151 axioms (2,171 declaration axioms, 2,219 logical axioms) from several aspects of epilepsy. This ontology is intended to be used for data management and text mining purposes. Availability The current release of the ontology is publicly available under a Creative Commons 4.0 License and shared via http://purl.obolibrary.org/obo/epso.owl and is a community-based effort assembling various facets of the complex disease. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/EPIO. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Motivation A global medical crisis like the COVID-19 pandemic requires interdisciplinary and highly collaborative research from all over the world. One of the key challenges for collaborative research is a lack of interoperability among various heterogeneous data sources. Interoperability, standardization and mapping of datasets is necessary for data analysis and applications in advanced algorithms such as developing personalized risk prediction modeling. Results To ensure the interoperability and compatibility among COVID-19 datasets, we present here a Common Data Model (CDM) which has been built from 11 different COVID-19 datasets from various geographical locations. The current version of the CDM holds 4639 data variables related to COVID-19 such as basic patient information (age, biological sex, and diagnosis) as well as disease-specific data variables, for example, Anosmia and Dispnea. Each of the data variables in the data model is associated with specific data types, variable mappings, value ranges, data units, and data encodings that could be used for standardizing any dataset. Moreover, the compatibility with established data standards like OMOP and FHIR makes the CDM a well-designed common data model for COVID-19 data interoperability. Availability The CDM is available in a public repo here: https://github.com/Fraunhofer-SCAI-Applied-Semantics/COVID-19-Global-Model Supplementary information Supplementary data are available at Bioinformatics online.
Motivation: Epilepsy is a multi-faceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment, and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary. The presented ontology is designed to enable better interconnection between scientific community members in the epilepsy domain.Results: The Epilepsy Ontology (EPIO) is an assembly of structured knowledge on various aspects of epilepsy, developed according to Basic Formal Ontology (BFO) and Open Biological and Biomedical Ontology (OBO) Foundry principles. Concepts and definitions are collected from the latest International League against Epilepsy (ILAE) classification, domain-specific ontologies, and scientific literature. This ontology consists of 1,879 classes and 28,151 axioms (2,171 declaration axioms, 2,219 logical axioms) from several aspects of epilepsy. This ontology is intended to be used for data management and text mining purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.