We report on an experimental study and statistical optimization of the surface roughness using design of experiments and the Taguchi method for parts made of 1.2709 maraging steel. We employ a hybrid additive manufacturing approach that combines additive manufacturing by selective laser melting with subtractive manufacturing using milling in an automated process within a single machine. Input parameters such as laser power, scan speed, and hatching distance have been varied in order to improve surface quality of unmachined surfaces. Cutting speed, feed per tooth, and radial depth of cut have been varied to optimize surface roughness of the milled surfaces. The surfaces of the samples were characterized using 3D profilometry. Scan speed was determined as the most important parameter for non-machined surfaces; radial depth of cut was found to be the most significant parameter for milled surfaces. Areal surface roughness S a could be reduced by up to 40% for unmachined samples and by 23% for milled samples as compared to the prior state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.